
Received: 25 June 2022 Revised: 14October 2022 Accepted: 5 December 2022

DOI: 10.1002/bies.202200123

I D E A S & S P E CU L AT I ON S

Insights & Perspectives

Three dimensions of thermolabile sex determination

Paul D.Waters1 Jennifer A.Marshall Graves2,3 Sarah L.Whiteley3

Arthur Georges3 Aurora Ruiz-Herrera4,5

1Faculty of Science, School of Biotechnology

and Biomolecular Science, UNSWSydney,

Sydney, NSW, Australia

2Department of Environment and Genetics, La

Trobe University, Bundoora, Australia

3Institute for Applied Ecology, University of

Canberra, Canberra, Australia

4Departament de Biologia Cellular, Fisiologia i

Immunologia, Universitat Autònoma de

Barcelona, Cerdanyola del Vallès, Spain

5Genome Integrity and Instability Group,

Institut de Biotecnologia i Biomedicina,

Universitat Autònoma de Barcelona,

Cerdanyola del Vallès, Spain

Correspondence

Paul D.Waters, Faculty of Science, School of

Biotechnology and Biomolecular Science,

UNSWSydney, Sydney, NSW, Australia.

Email: p.waters@unsw.edu.au

Arthur Georges, Institute for Applied Ecology,

University of Canberra, Canberra, Australia.

Email: georges@aerg.canberra.edu.au

Aurora Ruiz-Herrera, Departament de Biologia

Cellular, Fisiologia i Immunologia, Universitat

Autònoma de Barcelona, Cerdanyola del

Vallès, Spain.

Email: aurora.ruizherrera@uab.cat

Abstract

The molecular mechanism of temperature-dependent sex determination (TSD) is a

long-standing mystery. How is the thermal signal sensed, captured and transduced to

regulate key sex genes? Although there is compelling evidence for pathways via which

cells capture the temperature signal, there is no known mechanism by which cells

transduce those thermal signals to affect gene expression. Here we propose a novel

hypothesis we call 3D-TSD (the three dimensions of thermolabile sex determination).

We postulate that the genome has capacity to remodel in response to temperature

by changing 3D chromatin conformation, perhaps via temperature-sensitive transcrip-

tional condensates. This could rewire enhancer–promoter interactions to alter the

expression of key sex-determining genes. This hypothesis can accommodate mono-

genic ormultigenic thermolabile sex-determining systems, and could be combinedwith

upstream thermal sensing and transduction to the epigenome to commit gonadal fate.

INTRODUCTION

Sex determination is the process by which a bipotential gonad is

directed down a male (testis) or female (ovary) developmental path-

way. In mammals, and many other vertebrates, sex is controlled by

sex chromosomes, defined by bearing sex-determining genes that trig-

Abbreviations: 3C, chromosome conformation capture; 3D, three-dimensional; 3D-TSD,

three dimensions of thermolabile sex determination; ESD, environmental sex determination;

TSD, temperature-dependent sex determination; GSD, genetic sex determination; Hi-C,
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Pg, progesterone; PRC, polycomb repressive complex.
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ger conserved testis or ovary developmental pathways. The master

switch that triggers male or female development is strikingly different

in different lineages, but gonad development is similar across verte-

brates and the complex molecular pathways of sexual differentiation

are relatively conserved.[1,2]

In all XY therian mammals, the Y-borne Sry is testis determining,[3]

and in all ZW birds, the Z-borne Dmrt1 determines sex in a dosage-

dependent manner.[4] However, reptiles present a truly impressive

array of different sex-determining systems. Among reptiles with

genetic sex determination (GSD), turtles have male or female het-

erogamety (XY and ZW) (reviewed in Bista and Valenzuela[5]), most

snakes have female heterogamety (ZW or ZZW)[6] and both male and
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female heterogamety are observed in lizards (as well as XXY).[7] Sex

chromosomesmay bemore or less differentiated.

In contrast to these systems of GSD, some vertebrates use envi-

ronmental triggers, such as temperature, to determine sex (environ-

mental sex determination, ESD). The most common ESD mechanism,

temperature-dependent sex determination (TSD), was discovered in

reptiles over 50 years ago,[8] challenging the orthodoxy of GSD that

then prevailed. However, there are other systems of ESD involving

different cues, including (but not exclusive to) social structure and

resource availability (reviewed inNagahama et al.[9]). ESD raisesmajor

questions about how continuous variation in an external environmen-

tal signal can shift cellular fate and commit development to either the

ovary or testis molecular pathways.

Decades of research have yielded limited insight to themechanisms

by which temperature controls sex.[10,11] The problem of discovering

epigenetic modification to an unknown differentially expressed gene

(or genes) seems intractable. It is not clear whether focus should be on

one candidate sex-determining gene, or a set of about 60 conserved

sex genes (not necessarily on sex chromosomes in any species). Any

gene or gene product that promotes or shifts the trajectory of male

and female development, even if it acts indirectly, is a candidate for

thermal influence. There is also the possibility of a consensus or par-

liamentary system, whereby the regulatory actions of many – perhaps

all – sex differentiation genes are collectively displaced by temper-

ature to influence sexual outcomes.[12,13] Even if a common thread

was established by studies of traditional thermal sensing (e.g., cytosolic

Ca2+ and reactive oxygen species balance, alternative intron retention,

etc.[11,14–16]), this still leaves many candidate chromatin remodellers

(epigeneticwriters, readers or erasers) that can influence sex gene acti-

vation or suppression through differential transcription and isoform

composition. Thus, identifying the mechanism of TSD has been, and

remains, a difficult problem.

The fundamental questions underpinning TSD are (1) how is the

thermal signal sensed? and (2) once captured, how is this signal

transduced into epigenetic change that releases or represses expres-

sion of genes in sex-determining pathways? There have been several

discoveries of changes in the expression, or transcripts, of down-

stream genes, but little progress in identifying how the embryo senses

temperature.[11,17]

Recent research has shown that changes in the distribution of

structural proteins coupled with epigenetic modifications (loading of

active/inactive marks) can have profound impact on gene expression

via a change to three-dimensional (3D) genome conformation. Indeed,

such changes are an important part of cell differentiation during

development.[18–20]

What is not clear, however, is howdirectly or indirectly temperature

might affect the 3D structure of chromatin. For instance, temperature

has been suggested to have its effect indirectly via alterations in a

temperature-sensitive ion channel that alters the balance of cytosolic

Ca2+ and reactive oxygen species and affects epigenetic modifiers via

phosphorylation of a control gene.[11] However, there remains the pos-

sibility that increased temperature might alter 3D structures directly

by disrupting existing promoter–enhancer interactions, or establishing

new ones. Here, we outline a novel hypothesis that proposes that high-

order chromatin organization itself is thermosensitive, and changes

in 3D structure result in modulated expression of key sex genes

that impact gonadal fate. We have called this hypothesis the three

dimensions of thermolabile sex determination (3D-TSD for short).

HIGHER-ORDER CHROMATIN ORGANIZATION

Genomes are packaged into a chromatin structure, the regulation of

whichdependsondifferent levels of organization, including (i) chemical

modifications of the DNA, (ii) modifications to the four core his-

tones (H2A, H2B, H3 and H4) that comprise the nucleosomes around

which the DNA wraps and (iii) the 3D high-order organization of chro-

matin inside the nucleus that can change during the cell cycle and cell

differentiation (Figure 1).

Chromatin structure is maintained by DNA binding to histones, two

each of H2A, H2B, H3 and H4, stabilised with H1. This structure is

modulated by the addition of different chemical groups to histone

tails (active or repressive marks), as well as by DNA methylation,

and by their interactions with a host of other architectural factors,

enzymes, modifiers and transcription factors. For instance, dramatic

change of chromatin conformation associated with histone modifica-

tion and DNA methylation mediates global transcriptional silencing of

the inactive X chromosome inmammals.[21]

The combination of high-resolution microscopy and chromosome

conformation capture (3C)-based methods (3C; 4C, 5C and Hi-

C) has revealed that the 3D chromatin structure is complex and

dynamic. It includes chromosome territories in the interphase nucleus,

‘open/active’ and ‘closed/inactive’ compartments (A and B), topologi-

cally associated domains (TADs), and looping interactions, which are

established and maintained by structural proteins (i.e., cohesins and

CTCF)[20,22–25] (Figure 1). The compartmentalization of the genome

in this manner partitions genomes into ‘regulatory neighbourhoods’

by confining the activity of cis-regulatory elements to genes that fall

within the same TAD.[26] It has been suggested that TAD bound-

aries can act as barriers between epigenetic states and that TADs

harbour-specific epigenetic signatures.[27]

Changes in the distribution of structural proteins and transcrip-

tion factors, coupled with histone modifications associated with the

remodelling of high-order chromatin organization that impact on gene

expression, occur during development and in the germline.[20,28–31]

This is highlighted by the knockout of epigenetic machinery (e.g.,

histone deacetylases), which results in a changed epigenetic land-

scape that correlates with altered genomic contacts at promoters and

enhances that change gene expression.[32] In fact, many features of

3D genome configuration of germ cells are highly dynamic, with cycli-

cal transient chromatin–chromatin interactions that are established

rapidly (reviewed in Refs. [24, 31]). The outcome is genomic plasticity

that is poorly understood.

ENVIRONMENTAL 3D CHROMATIN REGULATION

Of the environmental stimuli that can influence chromatin regula-

tion, temperature is the most common. All organisms can respond
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F IGURE 1 3D chromatin structure. The DNAwraps around histones forming nucleosomes, and constitutes the chromatin fibre. Chromatin
fibres fold into chromatin loops forming topologically associated domains (TADs) with boundaries determined by cohesin complexes between
CTCF convergent motifs. TADs are organised into A or B compartments, according to chromatin accessibility and transcriptional activity.
Compartments are foundwithin chromosome territories in nuclei.

to temperature by activating a common transcriptional programme.

This heat shock response is well known to induce global changes

to gene regulation, as revealed in studies from human, mouse and

Drosophila.[33–35]

Recently, the implications for direct 3D genome remodelling by

temperature have also been considered. New 3C-based methods that

permit the study of how genomes remodel in response to the environ-

ment at a fine scale (reviewed in Kumar et al.[36]) have revealed that

plant genomes can remodel in response to salicylic acid[37] and proba-

bly light (reviewed in Perrella et al.[38]). In mammals (e.g., mouse liver),

TADs that harbour circadian genes switch between active and inac-

tive compartments at different times of the day, resulting in cycles of

transcriptionmodulation.[39] Thus, the response of 3D structure of the

genome to environmental stimuli is nothing if not dynamic.

While our understanding of genome-level responses to environ-

mental changes is still limited, there is considerable variation in

response to temperature across different organisms. Heat shock

to cultured human and Drosophila cells caused dramatic tran-

scriptional alteration without major changes in global chromatin

architecture.[40] However, in plants and yeast, gene expression

changes induced by heat stress were coupled with modification to 3D

genome structure.[37,41,42] In different Drosophila cells, heat stress

induces a redistribution of architectural proteins that modulate TAD

boundaries.[43] This chromatin remodelling, coupledwith covalent his-

tonemodifications, promoted new long-range interactions that formed

new enhancer–promoter contacts that affected gene expression.[43]

Subsequent studies of human embryonic stem cells showed that

response to temperature resulted in changed enhancer–promoter

interactions that correlated with a redistribution of RAD21 cohesin

and CTCF.[44] Studies of hormone-induced changes show that spa-

tial structure of TADs plays a role in regulating the rapid transient

response to external signals. In vitro studies using T47D breast cancer

cells revealed that TAD border structures and their epigenetic modifi-

cations can be rapidly modified (1 h) upon hormone (i.e., progesterone,

Pg) stimulation, and this can occur over large genomic domains.[27]

In this case, the Pg-activated receptor interacts with kinase signalling

networks that regulate the expression of thousands of genes.[45]

Collectively, this evidence suggests that the thermoregulation of

gene expression is tightly linked to chromatin remodelling, via changes

in structural proteins and transcription factors that can rapidly alter

a host of interactions in response to environment (review in Kainth

et al.[46]).

THE THREE DIMENSIONS OF SEX

This relationship between thermoregulation and chromatin remod-

elling suggests that the genome senses the thermal signal via
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temperature-induced chromatin remodelling, triggering either testis

or ovary determination at early stages of development.

Here we propose that 3D genome conformation can respond

directly to temperature, resulting in chromatin remodelling in bipo-

tential gonad precursor cells (Figure 2A). This could be reached by

disrupting specific chromatin interactions, resulting in new genomic

contacts that change sex gene expression. The plethora of chromatin

binding proteins, such as architectural (cohesins and CTCF), remod-

ellers (epigenetic writers, readers and erasers) and transcription fac-

tors (review inMisteli[24]), might be subjected to temperature-induced

structural change. Altered folding of these proteins could promote

changes in specific regulatory contacts. Significantly, recent studies in

yeast have proposed that transcriptional condensates can rapidly and

reversibly reconfigure the 3D genome in response to environmental

conditions.[42]

Given the importance of the higher-order chromatin structure in

demarcating the limits of gene-regulatory domains, disturbances of

this architecture would represent a means for rapid change in gene

expression. Shifting TADs or compartment boundaries in response to

temperaturewould exposemultiple genes to novel regulatory environ-

ments. This could break existing promotor enhancer contacts to turn

genes off or establish new contacts to turn genes on (Figure 2A). Rel-

evant to our hypothesis is recent evidence of the role of chromatin

remodelling during sex determination inmouse.[47] By integratingHi-C

and ChIP-seq data, the authors uncover rewiring of 3D enhancer hubs

during sex differentiation. In the light of this, we predict that the study

of the structural and functional features that demarcate these dynamic

boundaries in different vertebrate lineages (i.e., reptiles with TSD) will

elucidate themechanisms that govern higher-order genomic structure

and function.

This thermal sensing would induce genome remodelling in somatic

secretory gonadal cells (e.g., Sertoli, Leydig or granulosa) prior to sex

differentiation, which would be maintained until the commitment of

the gonad phenotype. Such thermosensitive chromatin interactions

could bring key enhancers and promotors from distant locations into

close proximity (as recently proposed for transcriptional condensates

in yeast[42]) to alter gene expression in the gonad developmental path-

ways. Genes in newly formed compartments would then be directly

regulated by this thermosensitive pathway.

Alternatively, the temperature may have a less direct effect on

chromatin structure. For instance, polycomb repressive complexes

(PRC) can alter chromatin structure (i.e., by H3K27me3 deposition)

resulting in changes of both cis and trans enhancer–promoter inter-

actions (reviewed in Illingworth[48]), ultimately regulating potential

sex-determining genes[49,50] (Figure 2B). Therefore, non-canonical

isoforms of chromatin modifiers (i.e., ΔN-JARID2[15]) with different

affinity to PRC2might act as a remodelling sensor, rather than a direct

regulator of sex genes.

Another indirect effect of temperature on chromatin might also

explain sex reversal in the half-smooth tongue sole. This fish has a

ZZ male:ZW female sex-determining system, in which a higher dosage

of the Z-borne Dmrt1 directs male development.[51] However, higher

temperature disrupts DNA methylation of the Dmrt1 locus in ZW

embryos, resulting in the expression of this gene and pseudomale

development.[52] It is unknown how demethylation is mediated, but

DNAmethylation has profound effects on chromatin conformation[53]

so its removal is likely to alter the 3D conformation and reactivate

Dmrt1.

TESTING THERMOSENSITIVE 3D CONFORMATION
AND SEXUAL FATE

Examining the potential role of 3D genome remodelling in developing

and/or sex-reversing embryonic gonads is now possible through the

implementation of an integrative approach that includes analysis of the

epigenome (histonemodifications andDNAmethylation) with genome

structure (Hi-C) at different developmental stages and at different

temperatures, coupledwith functional analysis (single cell RNA-seq) of

key sex genes.

For example, an excellent study system is brumation (akin to hiber-

nation) in the bearded dragon, during which thousands of genes are

differentially expressed compared to individuals at non-brumating

temperatures.[54,55] Comparing genome structure in cold-brumating

individuals and warm individuals will reveal if the reptile genome

has capacity to restructure in response to temperature. To determine

if the genome is remodelled in direct response to temperature, or

whether change to the underlaying epigenetic code is responsible,

profiling the epigenome (ChIP-seq/CUT&RUN/bisulfite sequencing),

including the detection of structural proteins such as cohesins and

CTCF, in combination with Hi-C experiments in the developing rep-

tile gonad (at different temperatures) will be key. Both epigenome and

Hi-C approaches could be conducted at different developmental time

points, from undifferentiated gonads through to developing ovaries

and testes after sexual fate is decided. This would reveal if the genome

remodelled before the occurrence of changes in the epigenome or

the distribution of structural proteins, which would indicate capac-

ity for direct sensing of the thermal signal. Alternatively, if key

genomic interactions were remodelled upon epigenetic change, this

would be indicative of an upstream sensing mechanism that results in

epigenome change that subsequently alters the high-order 3D genome

structure.

Research in reptile species with sex reversal might provide further

insights into the mechanisms involved. We propose that as well as

acting in strictly TSD species, 3D TSD acts also in sex reversal sys-

tems when temperature overrides a genetic sex-determining gene.

Particularly instructivemight be two sex-reversing reptile species with

opposite temperature-induced sex reversal. Pogona vitticeps has a ZZ

male:ZW female system in which ZZ develop as males at higher tem-

peratures. Bassiana duperreyi has the opposite system whereby XX

individuals reverse to male at low temperatures.[56,57] In both cases,

we hypothesize that temperature acts directly to alter thermosensitive

3D conformation, and affect the expression of influential genes in the

sex differentiation pathway.
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CONCLUSION

We propose that temperature can directly influence sex reversal by

chromatin remodelling without invoking intermediate signal transduc-

tion. We hypothesize that the thermal signal could be directly sensed

by transcriptional condensates in the genome, resulting in altered

enhancer–promoter interactions in the same TAD after compartment

switching. If a critical gene (or genes) in the sex-determining path-

way switched compartments, the result could be to turn off (or on)

testis/ovary development, and ultimately reassign gonadal fate. This

fascinating possibility envisages a direct genomic thermal sensor that

skips intermediate signalling.
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