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Temperature Fails to Influence Hatchling 
Sex in another Genus and Species of 

Chelid Turtle, Elusor macrurus 

ARTHUR GEORGES AND SALLY MCINNES, Applied Ecol- 
ogy Research Group and CRCfor Freshwater Ecology, Uni- 
versity of Canberra, ACT 2601, Australia. 

Temperatures that prevail during the incubation of 
eggs in reptile nests can have a profound influence, 
not only on rate of development and duration of in- 
cubation (Yntema, 1978), but also on phenotypic out- 
comes, such as coloration, morphometrics, or sex (Ew- 
ert, 1979; Murray et al., 1990; Allsteadt and Lang, 
1995). Reptiles typically exhibit one of two forms of 
sex determination-genotypic or environmental (Bull, 
1980; Bull, 1983). The latter usually takes the form of 
temperature-dependent sex determination (TSD). For 
example, in most species of turtle with TSD, high tem- 
peratures produce 100% females and low tempera- 
tures produce 100% males (Bull and Vogt, 1979). A 
very narrow range of temperatures in between, called 
the threshold or pivotal temperature, may yield hatch- 
lings of either sex. 

Recent literature reviews by Ewert and Nelson 
(1991), Janzen and Paukstis (1991), Viets et al. (1994), 
and Lang and Andrews (1994) revealed that the dis- 
tribution of TSD within the Reptilia is patchy at all 
taxonomic levels above species. All crocodilians stud- 
ied to date have the trait, yet their sister taxon, Aves, 
does not. Within Squamata, many lizards have TSD, 
but it has not been demonstrated for any species of 
snake. At the family level, turtles in Carettochelyidae 
and Pelomedusidae have TSD (Alho et al., 1985; Webb 
et al., 1986; Ewert and Nelson, 1991), yet their sister 
taxa, Trionychidae and Chelidae respectively, appar- 
ently do not (Vogt and Bull, 1982; Bull et al., 1985). 
Within families, some agamid lizards have TSD and 
others do not, with similar examples known in the 
Gekkonidae and Emydidae. The trait is even variable 
among species of the same genus, as in Clemmys (Ew- 
ert and Nelson, 1991; Ewert et al., 1994). 

Given such variation, one cannot argue convincing- 
ly for lack of TSD at any taxonomic level until having 
sampled a sufficiently wide range of its constituent 
taxa. The only chelid turtles studied thus far, the gen- 
era Emydura and Chelodina, lack TSD (Bull et al., 1985; 
Georges, 1988; Thompson, 1988). However, it cannot 
be said that Chelidae lack TSD in general because sev- 
eral genera remain unstudied. In this paper, we ex- 
amine the effects of constant temperature incubation 
on hatchling sex ratios of Elusor macrurus, a recently 
described monotypic genus of Australian short- 
necked chelid turtle (Cann and Legler, 1994) with no 
clear affinities (Georges and Adams, 1992). We also 
provide some of the first data on the eggs, nests, and 
incubation of this elusive species. 

Eggs of Elusor macrurus were collected from nests 
laid in sand bars adjacent to the Mary River, near Tia- 
ro, Queensland. The site was searched thoroughly 
from 19-21 October 1991 for signs of nesting imme- 
diately following three days of rain. Nine freshly laid 
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nests yielded 120 eggs; three other nests were de- 
stroyed by foxes (Vulpes vulpes). Height above water, 
distance from water, depth to the top egg, and cham- 
ber depth were measured for each nest. Egg length, 
egg width, and egg weight were measured for each 
egg with vernier callipers and an electronic field bal- 
ance. The eggs were buried in moist vermiculite (ap- 
proximately 50% water by weight) and transported to 
Canberra by road. 

Equal numbers of eggs that initiated development 
(as indicated by the white patch, Thompson, 1985) 
were systematically allocated to each of four incuba- 
tors set at 27, 28, 30, and 32 C so that initially an equal 
number of eggs from each clutch was incubated at 
each temperature. Remaining eggs were allocated ran- 
domly across temperatures to bring each incubator's 
total to 15 eggs. The eggs were incubated on a fixed 
quantity of moist vermiculite (4 g water per 3 g ver- 
miculite) in 500 ml circular plastic containers. The 
containers were weighed at weekly intervals and total 
moisture kept constant by the addition of water if nec- 
essary, but humidity in the containers was not mea- 
sured. Temperatures (+0.1 C) in close proximity to the 
eggs were recorded twice daily with mercury ther- 
mometers calibrated against a NATA certified ther- 
mometer. 

Hatchlings were weighed (?0.1 g) and killed by in- 
tracranial injection of sodium pentabarbitone. Weights 
included a small quantity of yolk that was internalised 
before or within 48 h of hatching. The right gonad, 
kidney, and associated ducts were removed, embed- 
ded in wax, sectioned, and dyed with haemotoxylin 
and eosin. The sex of each gonad was determined by 
examination under a light microscope according to 
criteria established in earlier studies (Georges, 1988). 

Elusor macrurus lays 10-16 (mean 13.3, N = 9) 
white, hard-shelled, ovoid eggs averaging 34.13 + 0.34 
mm in length, 22.43 + 0.19 mm in width, and 10.14 
+ 0.21 g in weight (means given with standard errors 
based on N = 9 clutches, 120 eggs in total). Egg size 

ranged from 11.5 g (37.2 x 22.7 mm) to 8.6 g (31.9 x 
21.6 mm). Eggs were deposited in a chamber con- 
structed in sloping sand or sandy loam adjacent to 
water. Mean distance from water was 6.62 + 0.76 m 
(1.4-9.5 m, N = 12) with a mean height above water 
of 2.50 + 0.36 (0.70-4.04 m, N = 12). Nest chamber 

depths ranged from 16.5 to 20.0 cm (mean 18.4 + 0.62 
cm, N = 5) with depth to the top egg ranging from 
7.5 to 13.2 cm (mean 10.7 + 0.77 cm, N = 6). 

All but four eggs initiated development of a white 
patch soon after collection or during transit. Approx- 
imate incubation periods are given in Table 1. Hatch- 
lings had a mean carapace length of 32.5 ? 0.29, a 
mean carapace width of 30.3 ? 0.33, a mean shell 
depth of 13.9 + 0.14, and a mean weight of 7.2 + 0.10 

g (N = 45). 
There was no significant association between hatch- 

ling sex ratio and incubation temperature (X2 = 0.75, 
df = 3, P = 0.86; Table 1). Pooling the data across 
temperatures yielded a sex ratio of male: female = 30: 
27 which was not significantly different from 1:1 (X2 
= 0.07, df = 1, P = 0.79). 

This study has established that another distinct lin- 
eage of chelid turtle, Elusor macrurus, lacks TSD. Given 
the considerable variation in TSD among taxa at all 
levels of taxonomy and its relevance to the manage- 

TABLE 1. Incubation period and outcomes of sex- 
ual differentiation for eggs of Elusor macrurus incu- 
bated at four different temperatures. Incubation peri- 
ods should be regarded as approximate because they 
include a 5 day period during transit when tempera- 
tures could not be controlled. 

Inc 
Temperature period 

(C) N (days) Males Females Unsexed 

27 15 62 6 8 1 
28 15 52-55 8 6 1 
30 15 46-48 8 6 1 
32 15 41-46 8 7 0 

Totals 30 27 3 

ment of threatened species (Morreale et al., 1982; Vogt, 
1994), studies of other chelid lineages are needed to 
determine if this pattern prevails throughout the fam- 
ily. 
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Hyla arborea var. japonica was first named by Gunth- 
er (1858), and Stejneger (1907) recognized it as a sub- 
species Hyla arborea japonica (Giinther). Subsequently, 
it was shown to be genetically distinct from Hyla ar- 
borea by Maeda and Matsui (1989). Kawamura et al. 
(1990) confirmed by hybridization crossing experi- 
ments that Hyla japonica is a distinct species. As far as 
we know, only Sokolov and Sakulina (1994) have com- 
pared the skins of these two species; however, mucous 
glands were not described. The establishment of Hyla 
japonica as a separate species from Hyla arborea and 
the paucity of information in the literature on the mu- 
cous glands of Hyla japonica encouraged us to conduct 
a histological study of the skin glands in this species. 

Five H. japonica (non-breeding males) were obtained 
from N. Shinozaki, Japan Amphibian Laboratory, Nik- 
ko, Tochigi Prefecture, Japan, and transported to 
Southern Illinois University at Carbondale (SIUC). 
Frogs were killed with MS-222 and fixed in Baker's 
Formalin (10% formalin and 1% CdC12). Dorso-ventral 
strips of skin (3-4 mm wide) were excised from the 
body wall behind the front legs and in front of the 
hind legs, processed by standard paraffin methods, 
and serially sectioned at 6 pLm or 15 pIm. Following 
the collection of tissues for study, the animals were 
deposited in the SIUC Fluid Vertebrate Collection. 

The following histological and histochemical meth- 
ods were used: Harris hematoxylin-eosin (H-E), 
(Luna, 1968); Periodic acid-Schiff (PAS); Alcian blue 
8GX (pH 2.5); Alcian blue 8GX (pH 2.5)/PAS; Mer- 
cury-bromphenol blue (HgBPB); Heidenhain's iron he- 
matoxylin (HIH); and Mallory's phosphotungstic acid 
hematoxylin (MPAH) (Table 1). 

All cutaneous glands were located in the stratum 
spongiosum of the dermis. In the dorsal skin, glands 
were surrounded dorsally and laterally by a sheath of 
melanophores (Fig. le). The glands were of a simple 
alveolar type, opening through their ducts on the ex- 
ternal surface of the skin. All were encircled by a layer 
of myoepithelial cells (Fig. le) with more or less elon- 
gated nuclei. The long axes of 60 mucous and 60 gran- 
ular glands were measured at 400x using an ocular 
micrometer. Granules in granular glands were mea- 
sured at 1000x. Both types of glands were measured 
from dorsal and ventral skins, and the measurements 
were combined. Measurements of immature and ma- 
ture glands of each type were grouped and the mean 
diameters calculated. Immature and mature stages of 
mucous and granular glands were present in skins, 
but mature granular glands containing granules pre- 
dominated. The mean size of mucous glands was 
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ular glands were measured at 400x using an ocular 
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sured at 1000x. Both types of glands were measured 
from dorsal and ventral skins, and the measurements 
were combined. Measurements of immature and ma- 
ture glands of each type were grouped and the mean 
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