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Sex determination and differentiation in reptiles is complex. Temperature-
dependent sex determination (TSD), genetic sex determination (GSD) and
the interaction of both environmental and genetic cues (sex reversal) can
drive the development of sexual phenotypes. The jacky dragon (Amphibolurus
muricatus) is an attractive model species for the study of gene–environment
interactions because it displays a form of Type II TSD, where female-biased
sex ratios are observed at extreme incubation temperatures and approxi-
mately 50 : 50 sex ratios occur at intermediate temperatures. This response
to temperature has been proposed to occur due to underlying sex determining
loci, the influence of which is overridden at extreme temperatures. Thus, sex
reversal at extreme temperatures is predicted to produce the female-biased
sex ratios observed in A. muricatus. The occurrence of ovotestes during devel-
opment is a cellular marker of temperature sex reversal in a closely related
species Pogona vitticeps. Here, we present the first developmental data for
A. muricatus, and show that ovotestes occur at frequencies consistent with a
mode of sex determination that is intermediate between GSD and TSD. This
is the first evidence suggestive of underlying unidentified sex determining
loci in a species that has long been used as a model for TSD.
1. Background
The determination and differentiation of a sexual phenotype is a major event in
vertebrate development, shaping the form and behaviour of individuals, and
influencing the ecological properties of species [1]. Among terrestrial vertebrates,
the evolution of sexual development in squamates (lizards and snakes) is
particularly labile, unlike the stable genetic sex determination (GSD) mechanism
of mammals. Squamates are, therefore, increasingly viewed as important
models for understanding the molecular and developmental basis for sexual
development in vertebrates [1–3].

Temperature-dependent sex determination (TSD), whereby incubation
temperature determines sex in the absence of sex chromosomes, is a sex determi-
nationmode occurring in at least 10% of squamate species [1,4]. It is also possible
for squamates to have genotypic sex determination, and for temperature to have
a sex determining influence in the presence of sex chromosomes [5,6]. In such
cases, extreme temperatures can override the influence of sex chromosomes,
causing a discordance between an individual’s sex chromosome complement
and its phenotypic sex (sex reversal) [7,8]. There are only two known naturally
occurring examples of such sex reversal: the Australian central bearded dragon
Pogona vitticeps, and the three-lined skink Bassiana duperreyi [6,9]. In these two
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species, it is clear that genetic factors and temperature can
interact, so blurring the dichotomy between GSD and TSD
[10]. These two species are unlikely to represent the only
instances of sex reversal in squamates, and its occurrence is
likely more widespread than currently appreciated in reptiles,
as well as other vertebrate groups [7,11].

Through its influence on sex determination, temperature
also plays an important role in the differentiation of gonads
and genitalia. In many female squamates, male genitalia
often develop concurrently with differentiated ovaries, and
the hemipenes do not regress until late in development, or
post-hatching. This asynchrony between gonadal and genital
phenotypes in female squamates is termed temporary pseudo-
hermaphroditism (TPH) [12] and requires a combination of
concurrent histology and hemipenal morphology data to
establish. TPH arises possibly because male genitalia may be
a developmental default for some squamates (likely those
with ZZ/ZW systems), that is overridden by other cues caus-
ing genital feminization [12,13]. In P. vitticeps, temperature-
induced sex reversal causes the development of ovotestes, a
rare gonadal phenotype with characteristics of both testes
and ovaries [12]. Ovotestes were observed at a highly specific
developmental period (stage 9) exclusively at sex-reversing
temperatures [12]. It was hypothesized that ovotestes develop-
ing during sex reversal occurs due to antagonism between
opposing cues from environmental stimuli and sex chromo-
somes and, therefore, can be used as cellular marker of sex
reversal [12]. In TSD species, ovotestes can also occur due to
incubation at the pivotal temperature (produces 50 : 50 sex
ratios), drug manipulations or developmental abnormalities,
though they are ultimately a rarely observed phenotype, par-
ticularly under natural conditions [14–18]. Importantly,
ovotestes are not observed at the more extreme incubation
temperatures that produce a single sex in TSD species.

The jacky dragon (Amphibolurus muricatus), an Australian
agamid lizard, is amodel for studies on the evolution and adap-
tative significance of TSD [19–24]. In this species, female-biased
sex ratios are obtained at high (30–32°C) and low (23–25°C)
temperatures, whereas approximately 50 : 50 sex ratios are pro-
duced at intermediate temperatures (27–30°C) [25]. Though
considered a classic TSD species, this sex ratio pattern has
been hypothesized to occur by temperature overriding an
underlying GSD system [26]. Under this hypothesis, sex
chromosomes are the primary sex determining influence at
intermediate temperatures and thus produce 50 : 50 sex ratios,
while extreme temperatures induce sex reversal in half of the
individuals (assuming half of the individuals are genetically
male) [26]. Therefore, if ovotestes indeed indicate sex reversal
[12], A. muricatus developing at temperatures outside of the
pivotal range should develop otherwise rarely observed
ovotestes at a frequency of approximately 50%.

In this study, we investigate Quinn et al.’s [26] hypothesis
that A. muricatus has a cryptic GSD mechanism with thermal
override by assessing the frequencies of ovotestes at extreme
incubation temperatures. For this purpose, we provide the
first simultaneous characterization of gonadal and genital
development for A. muricatus. We also consolidate important
baseline information on the development of this species, by
assembling the first quantitatively rigorous confirmation of
the thermal reaction norms of sex ratios in this species and
also providing the first staging descriptions for this emerging
model organism. Our data suggest that A. muricatus may
indeed have an unidentified genetic influence on sex
determination that is overridden by extreme temperatures,
highlighting the need for further studyon the sex determination
mode of this species.
2. Results
For the developmental data presented in this study, eggs from
A. muricatus were incubated at 24, 28 and 34°C, temperatures
that have been established to produce female-biased sex ratios
at the extremes, and approximately even sex ratios at the
intermediate temperature. Eggs were sampled throughout
embryonic development (figure 1; electronic supplemen-
tary material, file S1) and staged according to the system
developed for close relative, P. vitticeps [13].

(a) Temperature reaction norms of sex ratios
Our combined dataset (n = 806 individuals; electronic sup-
plementary material, file S3) confirms that A. muricatus does
exhibit Type II TSD (figure 2a). However, the proportion of
female individuals is not 100% at extreme temperatures, as
has been reported by incubation experiments with smaller
sample sizes [19,21]. This is the most comprehensive profile of
the temperature reaction norms for sex ratios in this species to
date, and reveals thatmore variation in sex ratios exists thanpre-
viously reported (electronic supplementary material, file S2).
Pearson’s χ2 test showed that sex ratios differed significantly
from 50 : 50 ratios at every temperature except for 27.5°C
(p = 2.2 × 10−16, electronic supplementary material, file S3).

(b) Frequency of ovotestes
Consistentwith our hypothesis, assuming aGSDsystemwith a
thermal override, the proportion of ovotestes is highest at
extreme temperatures and occurs at frequencies approaching
50% (table 1 and figure 2b). Of the samples with characterized
gonadal phenotypes (the gonads of some sampleswere unable
to be characterized, electronic supplementarymaterial, file S1),
ovotestes were observed more frequently at 24°C (n = 4 of 11,
36%) and 34°C (n = 5 of 11, 45%) compared to the moderate
incubation temperature at 28°C (n = 2 of 14, 14%; figure 2b).
In total, across all sampleswith a characterizedgonadal pheno-
type in all incubation temperatures, 31% had ovotestes (n = 11
of 36) (table 1; electronic supplementary material, file S1).

There was considerable morphological variation observed
in the ovotestes. Some samples exhibited rudimentary semini-
ferous tubules and a cortex layer, while others exhibited well-
defined tubules and a cortex layer (figure 3a). Unlike what is
seen in P. vitticeps, where ovotestes were observed during a
narrow developmental range (stage 9–9.5) [12], ovotestes were
observed at disparate developmental stages in A. muricatus,
spanning stages 3–16 (a range equivalent to approx. 72% of
embryonic development) (figure 1; electronic supplementary
material, file S1). Given the wide range of developmental
stages at which ovotestes were observed, they were concurrent
with every genital phenotype observed during development
(figures 1 and 3b; electronic supplementary material, file S1).

(c) Timing of gonad differentiation and sex ratios
The gonadal morphologies observed in A. muricatus are simi-
lar to those previously described for other reptile species
(figure 3b–d ). The gonad initially forms as a long ridge of
undifferentiated tissue along the mesonephros, before
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differentiating into ovaries or testes. Ovaries exhibit a distinct
cortex and degenerating medulla (figure 3d ). In testes, the
cortex degenerates and the medulla proliferates with semini-
ferous tubules (figure 3c). However, there are key differences
in the timing of gonadal differentiation between individuals.
Differentiated ovaries were observed as early as stage 4 at
24°C, which is considerably earlier than has been observed
in other reptile species (table 2). By contrast, bipotential
gonads were observed in a stage 5 specimen at 28°C (figure 1).

Of the specimens that had differentiated gonads (not
including ovotestes), 67% had testes at 24°C and 40% had
testes at 34°C. At 28°C, which produces 50 : 50 sex ratios,
we observed a male bias (75% of samples with differentiated
gonads had testes; electronic supplementary material, file S1).



Table 1. Embryos with ovotestes characterized in this study, including incubation temperature, developmental stage (based on staging system for close relative,
P. vitticeps [13]) and corresponding genital phenotype. Ovotestes were observed at all incubation temperatures (though only two were observed at 28°C), and
occurred alongside all possible genital phenotypes. They were also observed across a wide range of developmental stages. These data are also represented in
figure 1, and electronic supplementary material, file S1. Age is days post-oviposition (dpo).

egg ID incubation temperature age (dpo) stage gonadal phenotype genital phenotype

9144:01:03 24 16 6 ovotestes paired swellings

81826:01:01 24 32 10 ovotestes bilobed hemipenes

9171:01:06 24 53 16 ovotestes reduced hemipenes

9131:01:04 24 53 16 ovotestes reduced hemipenes

9165:01:01 28 13 7 ovotestes club shaped

9130:01:01 28 41 18 ovotestes pedicel

82431:01:03 34 3 3 ovotestes developing cloaca

9130:01:07 34 10 6 ovotestes paired swellings

9130:01:04 34 10 6 ovotestes paired swellings

9165:01:02 34 10 9 ovotestes club shaped

9138:01:01 34 17 12 ovotestes bilobed hemipenes
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(d) Genital development
Gross genital development follows the same processes as has
been previously described for P. vitticeps [13]. The cloacal area
forms early in development, followed by the growth of
paired swellings. These swellings continue to grow and even-
tually become bilobed hemipenes (figure 3b). In females,
hemipenes eventually regress to hemiclitores, then a pedicel.
In presumptive female specimens (those with differentia-
ted ovaries), hemipenes occurred at all three incubation
temperatures (figure 1).

At 24°C, hemipenes had not regressed completely by the
latest stage assessed (stage 16). However, these specimens
also possessed ovotestes suggesting that the lack of total hemi-
penis regression may have occurred because of insufficient
hormone signalling from the gonad (assuming development
was ultimately on a female trajectory). One stage 12 specimen
exhibited TPH, which is characterized with the concurrent
appearance of differentiated ovaries and bilobed hemipenes
[12]. At 28°C, hemipenes are observed between stages 9 and
17, with one stage 16 specimen exhibiting TPH. Two stage 18
specimens exhibited a pedicel, with one having ovaries and
the other ovotestes, suggesting that hemipenis regression can
still occur without fully differentiated gonads. At 34°C, one
stage 13 specimen exhibited TPH. Hemipenis regression was
observed in three specimens, with two developing a pedicel
at stage 18 (figure 1; electronic supplementarymaterial, file S1).

While the gross genital morphologies are similar between
A. muricatus and P. vitticeps, the timing of development differs.
In P. vitticeps, bilobed hemipenes have developed in both sexes
by approximately stage 11. In females, hemipenis regression
leading to hemiclitores occurs by approximately stage 16.5
[13]. In A. muricatus, hemipenes develop earlier and persist
for longer during development; the first specimens observed
with hemipenes were at stage 9 and the oldest possessed hemi-
penes at stage 17. In P. vitticeps, the TPH phase in females
persists from approximately stages 8 to 15. In A. muricatus,
the timing of the TPH phase is less well established due to
having fewer samples; however, we estimate the TPH phase
in A. muricatus as occurring between approximately stages 9
and 17, so although it might begin slightly later it probably
lasts slightly longer in A. muricatus compared to P. vitticeps
(electronic supplementary material, figure S1).
3. Discussion
Our results confirm our prediction that approximately half of
A. muricatus specimens incubated at extreme temperatures dis-
play ovotestes. This provides support for Quinn et al.’s [26]
suggestion that A. muricatus possess a cryptic genetic com-
ponent to sex determination while simultaneously exhibiting
a thermal override. We expect that ovotestes in A. muricatus
are occurring due to antagonism between genetic and thermal
influences on sex, as proposed for P. vitticeps [12]. A GSD
system with thermal override in A. muricatus would also
explain why extreme incubation temperatures do not produce
100% females, because sex reversal generally occurs at slightly
lower than absolute frequencies (approx. 96%) in P. vitticeps [6].

In P. vitticeps, ovotestes were observed exclusively in associ-
ation with sex reversal, and occurred during a very limited
developmental period [12]. In A. muricatus, ovotestes occur-
rence was far less stable. Ovotestes were observed at all three
incubation temperatures (though at a low frequency at 28°C),
and across a wide range of developmental stages. We also
observed male-biased sex ratios (67% at 24°C, 75% at 28°C
and 40% at 34°C). Understanding that sex determination
modes can exist on a continuum between GSD and TSD can
clarify such observations in A. muricatus. Even in TSD species,
heritable genetic variation in thermal thresholds can influence
sex ratios, particularly at the pivotal temperature [41]. These
differences in thresholds can subsequently shift an individual
embryo’s propensity for developing as one sex or the other at
a given temperature, which can create sex ratio biases, such as
those we observed in A. muricatus [42–45]. We argue that such
genetic variation in thermal thresholds likely exists alongside
other genotypic determinants of sex inA. muricatus, so explain-
ing the variation observed in both sex ratios and ovotestes
frequency at different incubation temperatures [46]. This is
akin to observations in close relative, P. vitticeps, where rates
of sex reversal increase as temperature increases, though some
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individuals do not reverse sex [6].Maternal genotype also influ-
ences rates of sex reversal; offspring of sex-reversed mothers
reverse at lower temperatures compared to offspring of concor-
dant mothers [6]. We propose that differences observed
between the two species may be due to the genetic determinant
of sex being less fixed inA. muricatus comparedwith P. vitticeps,
which possess differentiated sex microchromosomes [47]. A
particularly intriguing scenario might be that A. muricatus rep-
resents an early stage of sex chromosome evolution, where a
small number of sex-linked genes produce the unusual timing
of ovotestes that we observed.

The development of the European pond turtle, Emys
orbicularis, offers support for an interaction between a genetic
and thermal sex determination mechanism we propose for
A. muricatus. Emys orbicularis was presumed to have TSD
based on incubation experiments and hatchling sex ratios in
the laboratory, until additional research revealed that temp-
erature can override a weak genetic mechanism of sex
determination identified by differential expression of H-Y
antigens in gonadal tissues [48,49]. H-Y antigens are widely
associated with XX/XY and ZZ/ZW systems in a variety of
reptiles (reviewed in Dournon et al. [50]). The joint action of
H-Y expression and thermal sensitivity in E. orbicularis thus
implies that some genetic factors likely influence thermally
sensitive sex determination in many reptiles, and a similar
process may be occurring in A. muricatus (reviewed in Sarre
et al. [10]). However, it is important to note that the functional
roles of H-Y antigens are not well elucidated, particularly
how they may influence sex determination [7].

As with A. muricatus, the embryonic development of
E. orbicularis is often characterized by the presence of ovotestes.
In the turtle, they may persist post-hatching but ultimately
resolve as testes [51]. It appears that ovotestes occur readily
in this species due to a high sensitivity to small fluctuations
in oestrogens, which can rapidly drive the development of an
ovarian cortex but fails to fully repress the seminiferous
tubule proliferation in the medulla [52,53]. It is possible that
oestrogen sensitivity may also drive ovotestes development
(and its lability) in A. muricatus, though it is unknown how
oestrogen levels may be influenced by varied incubation temp-
eratures in A. muricatus. Testosterone, or the balance between
testosterone and oestrogen, may also influence ovotestes devel-
opment; however, further study is required. It is currently
unknown if ovotestes persist post-hatching in A. muricatus, or
if they resolve by hatching, as has been reported for P. vitticeps.
The timing in ovotestes occurrence greatly differs to that of
P. vitticeps, and may be more similar to E. orbicularis; however,
this remains to be investigated fully.



Table 2. Timing of gonadal differentiation in species with TSD in which gonadal development has been characterized. The stage and staging system used in
the original publication is provided, which has been calibrated to the staging system used for P. vitticeps and A. muricatus to compare the timing of
differentiation. Where only the thermosensitive period (TSP) is given, stages of the lower and upper bounds of the period or the average to the P. vitticeps
staging system are provided.

species gonad differentiation/TSP period staging system
P. vitticeps/A. muricatus
equivalent original reference

Alligator mississippiensis stage 23 [27] stage 13 [28]

Apalone spinifera stages 18–20 [29] stage 9 [30]

Calotes versicolor stage 34 [31] stage 9 [32]

Chelydra serpentina stages 14–16 (TSP period) [29] stage 14 = stage 5

stage 16 = stage 6

[33]

Crocodylus palustris stages 21–25 (TSP period) [27] stage 13 (average) [34]

Emys orbicularis male differentiation at stage 17,

female differentiation at stage 19

[29] stage 17 = stage 8

stage 19 = stage 9

[35]

Eublepharis macularius stages 33–37 (TSP period) [36] stage 33 = stage 6

stage 37 = stage 14

[37]

Malayemys macrocephala stage 17 [29] stage 8 [38]

Pogona vitticeps stage 8 [13] NA [13]

Trachemys scripta stages 14–20 (TSP period) [39] stage 14 = stage 5

stage 20 = stage 9

[40]
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Understanding the genetic underpinnings of ovotestes
development in reptiles would also be of great benefit. To
date, no ovotestes in reptiles have been sequenced to reveal
the gene expression profiles of this unusual phenotype. In
many fish species, ovotestes occur comparatively often, and
RNA sequencing has revealed novel insights into the genetic
machinery responsible for ovotestis development, for example,
in the rice field eel and black porgy [54–56]. In mammals, ovo-
testes are typically only associated with disorders of sexual
development; however, the Iberian mole possess ovotestes
and RNA sequencing has shown how they develop [57]. Inter-
estingly, despite the wide phylogenetic divide between these
groups, many of the same genes (e.g. aromatase and
DMRT1) have been implicated, so it would be particularly
intriguing for future research to assess this in reptiles.

We present the first comprehensive thermal reaction norms
for sex ratios in A. muricatus by combining our data with pre-
viously published sex ratio data. We show that contrary to
previous reports, the only incubation temperature that did
not exhibit significant deviation from 50 : 50 sex ratios was
27.5°C. This suggests that the intermediate temperature range
of this species may be far narrower than previously reported
[21,25,58], and that small sample sizes limit the accuracy of
earlier reported sex ratios. This may also go some way to
explaining the male-biased sex ratios we observed in our
study. Further, our observation of two samples with ovotestes
at 28°C can also be explained by this trend, as 50 : 50 sex ratios
are not actually expected at this temperature.

Lastly, we also show A. muricatus is the fourth squamate
discovered to exhibit TPH (male genitalia occurs alongside
differentiated ovaries), another condition previously con-
sidered unusual. This supports suggestions that TPH may
occur in female squamates and is associated with thermola-
bile sex determination (electronic supplementary material,
figure S1; [12]). Histological studies on squamate gonads
are rare, but we expect that further investigation of genital
and gonadal development will reveal TPH to be a common
occurrence among squamates, particularly among those
with retained hemipenes in female juveniles [36,59–61].
4. Conclusion
Our results indicate strong potential for extensive and unappre-
ciated diversity in genetic, temperature and possibly other cues
in the differentiation of sex in squamates. Our understanding of
the interaction betweengenes and the environment in reptile sex
determination remains poorly characterized, so this area pro-
vides many compelling avenues for future research.
Amphibolurus muricatus emerges as a particularly important
studyspecies to identify the nature of geneticmechanisms influ-
encing sex, such as evidence of cryptic sex chromosomes. It will
also be imperative to identify loci that have sex-associatedalleles
in adults from intermediate temperatures. Definitive demon-
stration of the genetic mechanisms underlying sex, combined
with identification of phenotype, will be required to confirm
our suggestion that sex reversal occurs in this species.Amphibo-
lurus muricatus would then represent the third squamate with
sex reversal, and would the first with sex reversal at both
extremes of temperature. We hope that our suggestion of sex
reversal in A. muricatus provides the impetus to examine the
sex determination modes of TSD squamates more closely, and
highlights novel approaches that can be taken to uncover pre-
viouslyunidentified complexities in reptile sexualdevelopment.
5. Material and methods
(a) Egg incubations and sampling
During the 2018–2019 and 2019–2020 breeding seasons, eggs were
obtained from both wild caught (n = 4) and captive bred females
(n = 4) for the developmental data presented in this study. Females
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were provided with nesting substrate and allowed to lay naturally.
If the female retained eggs for a prolonged period of time, they
were induced to lay with an intraperitoneal injection of 10–30 IU
of oxytocin followed by a 10 IU dose of calcium carbonate solution.
Eggs were weighed and randomly allocated to one of three incu-
bation temperatures (24°C, 28°C, 34°C). These temperatures are
within the range of those experienced in wild nests [24]. Eggs
were placed individually in glass jars filled damp vermiculite
(four parts vermiculite to five parts water by weight) and covered
with Glad Wrap® known to allow the diffusion of oxygen. Eggs
were subsequently randomly allocated to a target developmental
stage (6, 12 and 15), the sampling day estimated based on incu-
bation data from P. vitticeps and adjusted for differing incubation
durations [13]. Six eggs were sampled at day of lay to establish
stage at lay (two eggs from three clutches). This showed that
eggs were consistently at stage 2 based on the staging system
developed for P. vitticeps [13]. Every embryo was staged and
photographed fresh, and the urogenital system (UGS) was dis-
sected. In total, 44 embryos were obtained. While the sample
size is small due to the low reproductive output of this species,
these data can still provide valuable information on the embryonic
development of A. muricatus. All procedures were carried out in
accordance with animal ethics procedures from the University of
Canberra (Project 270). Additional incubations were carried out
at the University of Canberra and the University of New South
Wales, and these data were used to generate the temperature reac-
tion norms (electronic supplementary material, file S2). Constant
temperature equivalent (CTE) [62] was calculated for fluctuating
incubation data from [23]. Data used to calculate the CTE for
these incubations are provided in electronic supplementary
material, file S4.

(b) Histology and phenotype characterization
All UGS samples for histology were prepared at the University of
Queensland’s School of Biomedical Science’s Histology Facility.
Samples were processed for haematoxylin and eosin staining fol-
lowing standard histological procedures described in [12]. The
gonadal phenotypes for each sample were characterized follow-
ing established morphological characteristics, with the operator
blind to incubation temperature [12].

Ethics. All procedures were conducted according to approved ethics
procedures at the University of Canberra (Project 270). Wild caught
animals introduced into the breeding colony were collected with
approval from the NSW Office of Environment and Heritage (licence
number SL102112) and the ACT Government (licence number
LT201817).
Data accessibility. The data used in this study are provided as electronic
supplementary material.
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