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Abstract

The water skinks Eulamprus tympanum and Eulamprus heatwolei show thermally induced sex determination where

elevated temperatures give rise to male offspring. Paradoxically, Eulamprus species reproduce in temperatures of

12–15 �C making them outliers when compared with reptiles that use temperature as a cue for sex determination.

Moreover, these two species are among the very few viviparous reptiles reported to have thermally induced sex

determination. Thus, we tested whether these skinks possess undetected sex chromosomes with thermal override.

We produced transcriptome and genome data for E. heatwolei. We found that E. heatwolei presents XY chro-

mosomes that include 14 gametologs with regulatory functions. The Y chromosomal region is 79–116 Myr old and

shared between water and spotted skinks. Our work provides clear evidence that climate could be useful to

predict the type of sex determination systems in reptiles and it also indicates that viviparity is strictly associated

with sex chromosomes.

Key words: temperature-dependent sex determination, viviparous reptiles, genetic sex determination systems, water
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Introduction

Eulamprus tympanum and Eulamprus heatwolei
Reproduce in Colder Conditions Compared with Other
Species with Temperature-Dependent Sex Determination

Vertebrates exhibit two major classes of sex determination

systems. Genotypic sex determination (GSD), where genetic

components guide the development of the gonads, and

temperature-dependent sex determination (TSD), where spe-

cific incubation temperatures define the sex of the embryos

(Bachtrog et al. 2014). TSD in reptiles is thought to have

evolved when external conditions that enhance either male

or female offspring fitness could influence the sex of the em-

bryos (Charnov and Bull 1977; Shine 1999). For this reason,

the discovery of TSD in a viviparous skink was particularly

notable (Robert and Thompson 2001). In viviparous species,

the external conditions have little effect because embryonic

development and hatchling occur inside the mother’s womb

in a relatively stable environment.

The viviparous water skinks Eulamprus tympanum and

E. heatwolei (family Scincidae) are classified as TSD species

(Tree of Sex 2014) because cytogenetic analyses found no

evidence of heteromorphic sex chromosomes and female

Eulamprus skinks give rise to male offspring when they are

kept at warm temperatures (32 �C) during pregnancy (Robert

and Thompson 2001). Three features, however, make this

classification of Eulamprus as TSD suspect: 1) These two spe-

cies inhabit alpine habitats in southeastern Australia (Cogger

2000), whereas most reptiles with TSD systems inhabit

lowland areas; 2) Uniquely, although all known viviparous

reptiles have genetic sex determination systems,

E. tympanum and E. heatwolei are the only known viviparous

reptiles classified as TSD; and 3) Several studies have found

1:1 sex ratios in E. heatwolei at mild temperatures, both in the

laboratory and in the field (Schwarzkopf and Shine 1991;

Robert and Thompson 2001; Allsop et al. 2006). Taken to-

gether, these features implied either a GSD system with ther-

mal override or, although less likely, an atypical TSD system.

We first examined whether ambient temperatures in areas

inhabited by E. tympanum and E. heatwolei during breeding

seasons were unusual compared with reptile species with TSD

or GSD. For this, we mapped 30 years of ambient temper-

atures onto the geographic ranges of 101 species with TSD

and 99 species with GSD during their breeding season (fig. 1).

Average ambient temperatures for E. heatwolei and

E. tympanum during their breeding seasons are 15 and

12.4 �C, respectively (fig. 1). Thus, E. heatwolei and

E. tympanum are clear outliers when considered as TSD spe-

cies, located at 3 and 4 SDs away from the mean of the

distribution, respectively (fig. 1). In contrast, Eulamprus spe-

cies are found within the distribution of species with GSD

(fig. 1). These results are suggestive of the presence of previ-

ously undetected sex chromosomes in these two species.

Eulamprus heatwolei Has XY Chromosomes

To test for the presence of previously unidentified sex chro-

mosomes in skinks, RNAseq data were generated from brain,
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Fig. 1.—Distribution of average ambient temperature in geographical ranges during breeding seasons for reptile species with TSD (n¼101) and species

with GSD (n¼99). Labeled bars in red correspond to average ambient temperature for Eulamprus heatwolei and Eulamprus tympanum.
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liver, and gonads of one adult male and one adult female

E. heatwolei. We then applied a subtraction approach

(Cortez et al. 2014; Marin et al. 2017) to the male and female

transcriptomic data of E. heatwolei. Specifically, we assem-

bled a male-restricted transcriptome and used male and fe-

male genomic reads to uncover Y-linked transcripts (see

Materials and Methods). We identified Y-linked transcripts

from 14 protein-coding genes with known orthologous genes

located on a single syntenic block on chromosome 5 in Anolis

carolinensis and chromosome 1 in chicken (fig. 2a and sup-

plementary table 3, Supplementary Material online).

Additionally, we performed a male and female genomic

read coverage analysis of six chromosomes of E. heatwolei

(see Materials and Methods). We found a region on chromo-

some 5 where the male shows only half of the coverage (i.e.,

one genomic copy, fig. 2b, and supplementary fig. 1,

Supplementary Material online). XY gametologs map to this

specific region on chromosome 5 (fig. 2a and b) and analysis

of their genomic coverage is consistent with two X gameto-

logs in females but one X and one Y gametolog in males

(supplementary fig. 2, Supplementary Material online).

Lastly, we screened the genomes of seven males and seven

females using standard PCRs and found that we could only

amplify Y-linked sequences in males (fig. 2c and supplemen-

tary fig. 3, Supplementary Material online). In summary, the

results reveal the presence of sex chromosomes in E.

heatwolei.

Functions associated to the identified Y-linked genes (re-

trieved from the GeneCards database; www.genecards.org,

last accessed May 25, 2020) include ubiquitination (UBE2H

and CAND1), signaling pathways (LEMD3/MAN1 and FRS2),

cell cycle, cell growth and differentiation (PPP1R12A, E2F7,

(c)
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Fig. 2.—(a) Synteny of the 14 XY gametologs in other species. (b) Male (blue) and female (red) genomic coverage along the chromosome 5 of

Eulamprus heatwolei. A syntenic region shows half of the coverage in males (one copy) but regular coverage in females (two copies). XY gametologs map to

this region. Blue arrows show the matching locations of Y-linked markers from Niveoscincus ocellatus. (c) PCR screenings of two males and two females

using primers designed to amplify three Y-linked genes (seven males and seven females were screened in total; see supplementary fig. 3, Supplementary

Material online). (d) Time-calibrated synonymous substitution tree used to estimate the age of the XY chromosomes in E. heatwolei. Branch lengths represent

millions of years.
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RAP1B, and BTG1), transcription regulation (ZNF384), ion

transport (ATP2B1), fatty acid metabolism (ZDHHC17), and

DNA replication (NAP1L1). Many of the identified Y

chromosome-linked genes have known regulatory functions.

Examining the list of putative Y-linked genes, PPP1R12A is of

particular interest. The protein coded by this gene is part of

the PPP1C protein complex that catalyzes many protein de-

phosphorylation reactions in the cell and is essential for male

fertility in mice (Silva et al. 2015). Another member of the

PPP1C complex, the PPP1CC gene, is one of the oldest genes

on the Y chromosome of pleurodonts (Marin et al. 2017), a

group that diverged from the skink lineage 184.9 Ma (data

retrieved from the TimeTree database; www.timetree.org/,

last accessed May 25, 2020). The convergent co-option of

genes forming part of the same molecular pathways

(PPP1R12A and PPP1CC are probably involved in spermato-

genesis) on the Y and W chromosomes is a frequent phenom-

enon in vertebrates (Marshall Graves and Peichel 2010;

O’Meally et al. 2012).

To obtain an estimate for the origin of the male-specific

region on the Y chromosome (MSY) in the E. heatwolei line-

age, we used dS trees based on the nucleotide sequences of

the XY gametologs in E. heatwolei and orthologous sequen-

ces from other species (see Materials and Methods). From the

synonymous substitution rates of the concatenated sequen-

ces of the XY gametologs, we estimated that E. heatwolei sex

chromosomes originated�116 Ma (95% confident intervals:

109.45–119.28 Ma; values derived from 100 bootstrap

rounds; fig. 2d). Moreover, estimates obtained using BEAST

resulted in a sex chromosome age of�93 Ma (supplementary

fig. 4, Supplementary Material online). Next, we retrieved Y-

linked markers reported for the spotted skink, Niveoscincus

ocellatus (Hill et al. 2018). These sequences are short (17–

70 bp) and likely represent repeated, intergenic or intronic

regions of the MSY. Only nine Y markers aligned to the

E. heatwolei and A. carolinensis genomes; four mapped to

multiple genomic locations (i.e., likely repeated sequences),

one mapped to chromosome 3, and four mapped to chro-

mosome 5, exactly within the MSY of E. hetawolei (fig. 2, blue

arrows; supplementary table 3, Supplementary Material on-

line). This association is highly significant (Fisher exact test,

P< 0.001) and indicative that water and spotted skinks likely

share a common MSY, which originated>79 Ma (divergence

time between the two groups of skinks; data retrieved from

TimeTree; http://www.timetree.org/, last accessed May 25,

2020).

Conclusions

Our work identified the MSY locus in E. heatwolei’s chromo-

some 5 and, importantly, it provided evidence that climate

could be a good predictor of sex determination systems in

reptiles. We can now reclassify E. heatwolei (and probably

E. tympanum) as a viviparous skink showing GSD with

thermally induced sex reversal at elevated temperatures

(Shine et al. 2002; Quinn et al. 2007; Radder et al. 2008;

Holleley et al. 2015). In the past, also the viviparous skink,

N. ocellatus was assumed to have TSD on a lowland popula-

tion (Pen et al. 2010). Here, we found that E. heatwolei and

N. ocellatus share Y-linked sequences. We estimated that the

sex-linked locus originated �79–116 Ma. Note that other

species in the Scincidae family also have XY chromosomes

(supplementary fig. 5, Supplementary Material online), so per-

haps all skink species share the same GSD system.

Formerly, reptiles were thought to either have GSD or TSD

systems. However, various studies have shown that in several

species, including the viviparous E. heatwolei (Robert and

Thompson 2001) (and this work), the viviparous N. ocellatus

(Hill et al. 2018), the oviparous Pogona vitticeps (Quinn et al.

2007; Holleley et al. 2015), and the oviparous Bassiana duper-

reyi (Shine et al. 2002; Radder et al. 2008), certain incubation

temperatures can override the signaling cascade initiated by

sex-linked genes and influence the fate of the embryonic

gonads. These thermally induced sex reversal mechanisms

may represent retained elements of ancestral TSD systems.

Further analyses in E. heatwolei and related species could

help answer this question.

We know that viviparity has evolved from oviparity >100

times (Sites et al. 2011; Pyron and Burbrink 2014) and it is

strongly correlated with the colonization of cold alpine envi-

ronments (Lambert and Wiens 2013). The Eulamprus species

were the last viviparous reptiles classified as TSD (Tree of Sex

2014). Our results indicate, for the moment, that viviparity in

reptiles is strictly associated with GSD systems.

Materials and Methods

Data Generation

One adult male (Euhea_18_05) and one adult female individ-

ual (Euhea_18_03) of E. heatwolei species were captured

from a population that inhabits Woods Reserve, Corin

Road, ACT, Australia (�35.480751, 148.940398). Both indi-

viduals were sacrificed by intraperitoneal injection of pento-

barbitone following the standard operating procedures

specified by the animal ethics committee of the University

of Canberra. We generated DNA-seq libraries for a male

and female E. heatwolei from liver tissue using the Illumina

TruSeq DNA protocol for short insert size (400–450 nt). We

generated strand-specific RNA-seq libraries (using the Illumina

TruSeq Stranded mRNA Library protocol) for a total of six

samples obtained from brain, liver, and gonads for a male

and female E. heatwolei. All libraries were sequenced on

Illumina HiSeq 2500 sequencers at the University of

Canberra. We generated 262–269 million 150-nt paired-

end DNAseq reads. We generated 82–95 million 125-nt

paired-end RNAseq reads. Further details in supplementary

table 4, Supplementary Material online. Quality of the reads
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was verified using FastQC (http://www.bioinformatics.babra-

ham.ac.uk/projects/fastqc, last accessed May 25, 2020) and

the remaining adaptors were removed with Trimmomatic

(Bolger et al. 2014).

Assembly of Y-Linked Transcripts

To assemble Y-linked transcripts in E. heatwolei, we used a

subtraction approach based on male and female RNAseq data

(Cortez et al. 2014; Marin et al. 2017; Acosta et al. 2019).

Briefly, male RNA-seq reads were aligned onto the de novo

reconstructed female transcriptome from E. heatwolei using

Hisat2 (v2.0.2) (Kim et al. 2015); no mismatches allowed;

reads not mapping were selected. We also removed male

RNA-seq reads sharing k-mers with the female transcriptome

(Akagi et al. 2014). The selected reads were passed to Trinity

(v2.0.2, default k-mer of 25 bp) (Grabherr et al. 2011) to as-

semble transcripts that were only present in male tissues. We

obtained 21,249 transcripts that were subsequently aligned

to the male and female genomic reads using BlastN (Altschul

et al. 1990); at a 100–99% identity threshold. We selected

those transcripts showing 4�–14� of averaged coverage of

male genomic reads and zero averaged coverage of female

genomic reads (supplementary table 3, Supplementary

Material online). To establish Y gene identity, we searched

NCBI GenBank (Reptile taxa only; http://www.ncbi.nlm.nih.

gov/genbank, last accessed May 25, 2020) with BlastN and

BlastX for the closest homologs and identified transcripts that

coded for 14 proteins (supplementary table 3, Supplementary

Material online). BlastX searches also allowed the identifica-

tion of CDS regions. For these 14 Y-linked protein-coding

genes, we performed BlastN searches against the de novo

reconstructed female transcriptome from E. heatwolei to

find the X gametologs (best match over the entire sequence;

95–97% identity). We verified the X gametologs identity us-

ing coverage analyses of male and female genomic reads and

GenBank searches (same gene identity as Y gametologs). XY

gametologs in E. heatwolei were searched against the

A. carolinensis and chicken genomes using the sequence

search engine at the ENSEMBL webpage (https://www.

ensembl.org/Multi/Tools/Blast, last accessed May 25, 2020)

to establish whether they formed a syntenic block. We vali-

dated the presence of a Y chromosome by PCR screenings

using genomic DNA obtained from tails snips of seven males

and seven females. Additional information can be found in

the extended Materials and Methods section in the

Supplementary Material online. We retrieved the Y-linked

markers in N. ocellatus (Hill et al. 2018) and used BlastN (e-

value< 0.01) to map these sequences onto the reconstructed

E. heatwolei chromosomes and the A. carolinenesis reference

genome downloaded from the Ensembl database (https://

www.ensembl.org/, last accessed May 25, 2020; v.97).

More details in supplementary table 3, Supplementary

Material online.

Genomic Coverage Analyses

We followed a methodology previously published (Vicoso

et al. 2013). Briefly, the male and female genomic reads

were assembled into contigs. The contigs were subsequently

aligned and ordered based on the A. carolinensis reference

genome. We used bowtie2 (Langmead and Salzberg 2012) to

align the DNA-seq reads from the male and female

E. heatwolei onto the reconstructed chromosomes.

Coverage along the chromosomes was calculated using

BEDtools (Quinlan and Hall 2010), bins of 100,000 nucleoti-

des. Additional information can be found in the extended

Materials and Methods section in the Supplementary

Material online.

Data Collection

Full list of reptiles with known TSD system was obtained from

the Tree of Sex database (Tree of Sex 2014) and literature

searches. We searched the literature and dedicated databases

for the duration and month intervals of the breeding seasons.

We collected information for 101 species with TSD (supple-

mentary tables 1 and 2, Supplementary Material online).

Temperature data from the entire surface of the planet

were downloaded from the Climatic Research Unit (http://cat-

alogue.ceda.ac.uk/uuid/3df7562727314bab963282e6a0284

f24, last accessed May 25, 2020; version 3.24.01). Additional

information can be found in the extended Materials and

Methods section in the Supplementary Material online.

Geographical Ranges

Shapefiles for 29 species where downloaded from the RedList

database (http://www.iucnredlist.org/, last accessed May 25,

2020; version 3; supplementary table 1, Supplementary

Material online). For 72 additional species (supplementary ta-

ble 2, Supplementary Material online) we generated geo-

graphic ranges using the ecological niche modeling routines

applying the maximum entropy algorithm in Maxent (Phillips

et al. 2006) using the R package kuenm (Cobos et al. 2019).

Additional information can be found in the extended

Materials and Methods section in the Supplementary

Material online.

Mapping Climate Data to the Species Distribution

We matched the climate data with the species shapefiles us-

ing a dedicated R package built by Dr Anna Krystalli as part of

the Newton Advanced Fellowship program (https://github.

com/annakrystalli/IUCNextractR, last accessed May 25,

2020). We recovered the median temperature (ambient tem-

perature) of all months comprised in the breeding season.

Additional information can be found in the extended

Materials and Methods section in the Supplementary

Material online.
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Synonymous Substitution Analyses

To assess the age at which the XY system was originated in

E. heatwolei, we followed a previous procedure (Cortez et al.

2014; Marin et al. 2017; Acosta et al. 2019). Briefly, we

aligned using PRANK (Loytynoja and Goldman 2005) the cod-

ing sequences of XY gametologs in E. heatwolei and coding

sequences of 1–1 orthologous in other reptiles, mammalian

and Xenopus species downloaded from the Ensembl data-

base (https://www.ensembl.org/, last accessed May 25,

2020; v.97). We obtained the species’ tree from the

TimeTree database (http://www.timetree.org/, last accessed

May 25, 2020). We concatenated the alignments and calcu-

lated synonymous substitution rates (dS) using codeml (Yang

1997) and a bootstrap approach. Branch lengths on the spe-

cies’ tree were used to obtain an ultrametric, time-calibrated,

tree using the chronos library (ape package in R, v5.0) (Paradis

and Schliep 2019). The age of the sex chromosomes was

obtained from the calibrated branch lengths just before and

after the split of the XY gametologs and the time since

E. heatwolei diverged from the Snake–Pogona–Anolis lineage

(divergence data retrieved from TimeTree; http://www.time-

tree.org/, last accessed May 25, 2020). We also calculated the

age of the sex chromosomes using BEAST v1.10.4 (http:/

beast.bio.ed.ac.uk/), which resulted in an age estimate of

�93 Ma. We used the relaxed clock and calibrated the tree

based on the reptile/mammalian divergence time. We ran the

analyses two independent times for 100,000,000 genera-

tions, sampling every 1,000 generations. Additional informa-

tion can be found in the extended Materials and Methods

section in the Supplementary Material online.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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