
Cellular calcium and redox regulation: the
mediator of vertebrate environmental sex
determination?

Meghan A. Castelli1,2† , Sarah L. Whiteley1,2† , Arthur Georges2* and
Clare E. Holleley1,2

1CSIRO, Australian National Wildlife Collection, GPO Box 1700, Canberra, 2601, Australia
2Institute for Applied Ecology, University of Canberra, Canberra 2617, Australia

ABSTRACT

Many reptiles and some fish determine offspring sex by environmental cues such as incubation temperature. The mech-
anism by which environmental signals are captured and transduced into specific sexual phenotypes has remained unex-
plained for over 50 years. Indeed, environmental sex determination (ESD) has been viewed as an intractable problem
because sex determination is influenced by a myriad of genes that may be subject to environmental influence. Recent
demonstrations of ancient, conserved epigenetic processes in the regulatory response to environmental cues suggest that
the mechanisms of ESD have a previously unsuspected level of commonality, but the proximal sensor of temperature that
ultimately gives rise to one sexual phenotype or the other remains unidentified. Here, we propose that in ESD species,
environmental cues are sensed by the cell through highly conserved ancestral elements of calcium and redox (CaRe) sta-
tus, then transduced to activate ubiquitous signal transduction pathways, or influence epigenetic processes, ultimately to
drive the differential expression of sex genes. The early evolutionary origins of CaRe regulation, and its essential role in
eukaryotic cell function, gives CaRe a propensity to be independently recruited for diverse roles as a ‘cellular sensor’ of
environmental conditions. Our synthesis provides the first cohesive mechanistic model connecting environmental signals
and sex determination pathways in vertebrates, providing direction and a framework for developing targeted
experimentation.
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I. INTRODUCTION

Themechanisms bywhich sex is determined and the processes
by which sexual phenotypes subsequently differentiate (sexual
differentiation) have been a focus of enquiry for many centu-
ries (Mittwoch, 2000, 2013). The structures of the testes and
ovaries are highly conserved across vertebrates (Morrish &
Sinclair, 2002; Schroeder et al., 2016), so it is not surprising
that the genes and regulatory processes governing gonad for-
mation and differentiation share a high degree of commonal-
ity (Sarre, Georges & Quinn, 2004; Cutting, Chue & Smith,
2013; Capel, 2017). Despite the conservation of gonadal mor-
phology, sex in vertebrates is influenced by a wide variety of
mechanisms, broadly divided into genetic sex determination
(GSD) and environmental sex determination (ESD), as well
as mixed systems in which genes and environment interact
to determine sex (Bachtrog et al., 2014). ESD systems occur
in species from 15% of vertebrate orders. They use several dif-
ferent environmental cues including light regime, social stress,
pH and temperature (Bachtrog et al., 2014).

Decades of research on model and non-model organisms
have documented the extraordinary variety of sex-
determining environmental signals, and characterized differ-
ent downstream elements of sex differentiation pathways in
ESD systems. However, recent work implicating ancient,
conserved epigenetic mechanisms in the regulatory response
to environmental cues suggests that the mechanisms of ESD
have a previously unsuspected level of commonality
(Rhen & Schroeder, 2010; Deveson et al., 2017; Ge et al.,
2018). This poses the fundamental question: what is the
mechanism by which such a wide variety of environmental
cues are transduced to determine sex by a common molecu-
lar sensor?

The conservation of epigenetic elements in ESD suggests
the action of a biochemical sensor common to all ESD spe-
cies. Such a sensor must be (i) inherently environmentally
sensitive; (ii) capable of interacting with components of
known sex differentiation pathways; and (iii) conserved in
function yet plastic enough to be recruited to capture and
transduce different environmental signals for different phe-
notypic outcomes.

Here, we propose a general model in which sex determina-
tion is mediated by cellular calcium (Ca2+) and redox (reac-
tive oxygen species; ROS) status, which are subject to
environmental influence. Elements of this hypothesis have
been discussed in six recent papers that explicitly posited
the involvement of either ROS production or Ca2+ flux in

directing the outcomes of ESD (Yatsu et al., 2015, 2016;
Czerwinski et al., 2016; Corona-Herrera et al., 2018; Lin
et al., 2018; Hayasaka et al., 2019). We suggest that these
two interrelated signalling systems (Richter & Kass, 1991)
work together to initiate sex determination.

Here, we refer to calcium and redox status collectively as
CaRe status, and propose a model for its biological action
in ESD. We review evidence that CaRe status (and its subse-
quent effects on CaRe-sensitive regulatory pathways) is an
environmentally sensitive mediator of complex biochemical
cascades, and therefore a promising candidate for the cap-
ture and transduction of environmental signals into a sexual
outcome. We propose that these CaRe-sensitive regulatory
pathways have been co-opted independently and repeatedly
to determine sex in different vertebrate lineages, acting as the
crucial missing link between sex and the environment.

II. CALCIUM AND REDOX REGULATION IN
THE CELL

(1) Roles of ROS and Ca2+

ROS and Ca2+ constitute some of the most important signal-
ling molecules in the cell, and are both involved in a stagger-
ing variety of essential cellular processes (Gordeeva,
Zvyagilskaya & Labas, 2003; Camello-Almaraz et al., 2006;
Görlach et al., 2015). The subtle ways in which these interac-
tions can be modulated allows cellular responses to be fine-
tuned according to the cellular context (Yan et al., 2006; Met-
calfe et al., 2010).

ROS are highly reactive by-products of cellular respira-
tion, and can cause cellular damage when production
exceeds that of the cell’s antioxidant capacities
(Martindale & Holbrook, 2002; Temple, Perrone & Dawes,
2005). ROS are produced mainly in the electron transport
chain in the mitochondria, but can be generated elsewhere
in the cell. They are typically rapidly dismuted through a
series of antioxidant reactions (Camello-Almaraz et al.,
2006; Yan et al., 2006; Hamanaka & Chandel, 2010). If
ROS production outweighs the antioxidant capacity of the
cell, the redox environment can be altered to an oxidizing
state (Treidel, Carter & Bowden, 2016). However, at physio-
logically moderate levels (eustress), ROS possess vital cellular
signalling roles in growth, homeostasis, reproduction, and
programmed apoptosis (Covarrubias et al., 2008; Dowling &
Simmons, 2009; Sies, Berndt & Jones, 2017). When acting in
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their capacity as signalling molecules, ROS can influence
protein conformation and function through the oxidative
modification of accessible cysteine residues and reversible
changes to disulfide bonds (Hammond, Lee & Ballatori,
2001; Covarrubias et al., 2008; Morgan & Liu, 2011; Cre-
mers & Jakob, 2013). Even subtle subcellular alterations in
redox state can drive differential gene expression (Sen &
Packer, 1996; Antelmann & Helmann, 2010) through physi-
ological or epigenetic mechanisms (Cyr & Domann, 2011;
Timme-Laragy et al., 2018), and ultimately influence cell
and tissue-specific environmental responses.

In close concert with redox signals, Ca2+ flux co-regulates
many cellular signalling and environmental sensing functions
(West et al., 1982; Contreras et al., 2010; Görlach et al., 2015;
Plattner & Verkhratsky, 2015), and displays considerable
evolutionary flexibility in recruitment to these different func-
tions (Hilton et al., 2015). Ca2+ concentrations inside the cell
are tightly controlled by numerous calcium pumps and chan-
nels on the plasma membrane (Ermak & Davies, 2002), and
are mediated by Ca2+ release from internal stores in the
mitochondria and endoplasmic and sarcoplasmic reticula
(Røttingen & Iversen, 2000; Berridge, Bootman & Roderick,
2003; Brostrom & Brostrom, 2003). Ca2+-mediated signal-
ling is crucial for orchestrating cell signalling cascades, which
are highly sensitive to and modulated by the amplitude,
duration, and subcellular localisation of Ca2+ (Røttingen &
Iversen, 2000; Dupont & Sneyd, 2017). Such finely tuned sig-
nal transduction cascades, which primarily involve protein
phosphorylation or dephosphorylation, allow Ca2+ to con-
trol a wide variety of highly specific responses to environmen-
tal variables (Brostrom & Brostrom, 2003; Sharma,
Nguyen & Geng, 2014).

(2) Environmental sensitivity of Ca2+ and ROS

We propose that CaRe status is the most promising candi-
date for encoding extrinsic environmental signals in the cell,
and provide a framework in which CaRe status determines
sex in environmentally sensitive species. On a biochemical
level, ROS and Ca2+ levels in the cell are affected by many
environmental factors, such as temperature (Ahn & Thiele,
2003), ultraviolet (UV) light (Schieven et al., 1993; Gniadecki
et al., 2000), and hypoxia (Chandel et al., 2000). CaRe status
can therefore indicate the presence and magnitude of an
environmental signal and initiate a cellular response.

Ca2+ signalling has been implicated in temperature-
dependent sex determination (TSD) through the
temperature-sensitive regulation of transient receptor poten-
tial (TRP) cation channel expression in two TSD alligator spe-
cies [American alligator, Alligator mississippiensis (Yatsu et al.,
2015) and Chinese alligator, Alligator sinensis (Lin et al., 2018)]
and a freshwater turtleMauremys reevesii (Ye et al., 2019). These
plasma membrane channels control the flow of Ca2+ ions into
the cell, and are thermosensitive at least in mammals (Hilton
et al., 2015), although TRP channel function is unknown for
other vertebrates (Hilton et al., 2015; Yatsu et al., 2015).Within
the TRP family, TRPV4 exhibits temperature-specific

differential expression in A. mississippiensis (Yatsu et al., 2015),
and three other TRP family genes (TRPV2, TRPC6, and
TRPM6) display temperature- and sex-biased expression in
A. sinensis (Lin et al., 2018). It was suggested that these channels
act as the initial temperature sensor mechanism in alligators
that regulates the expression of downstream sexual develop-
ment genes through Ca2+ signalling (Lin et al., 2018). The
application of TRPV4 antagonist drugs in A. mississippiensis

partially interfered with male development, producing testes-
like gonads with incomplete Mullerian ducts (Yatsu et al.,
2015). This suggests that TRPV4 operates alongside other,
as yet unidentified, thermosensitive mechanisms acting in con-
cert with Ca2+, such as those involving ROS. In the turtle
M. reevesii, the application of a TRPV1 and TRPM8 inhibitor
altered sex ratios under certain incubation conditions, and
although the authors accredited this to inhibited thermoregu-
latory behavior rather than altered sex gene expression, the
result could be due to interference with Ca2+ signalling
(Ye et al., 2019).
TRP channels also respond to different wavelengths of vis-

ible light (Wang et al., 2016), and other research has pro-
posed the effect of light on intracellular calcium
concentrations to be mediated by ROS production (Lavi
et al., 2003). Additionally, the oxidation of cysteine residues
can sensitize and activate TRPA1 (Materazzi et al., 2012)
and TRPV1 (Kozai, Ogawa & Mori, 2013; Ogawa et al.,
2016), further substantiating the link between the two mes-
senger systems in response to various stimuli. TRP channels
are also sensitive to and can be modulated by steroid hor-
mones, particularly in sperm cells (Kumar et al., 2015).
ROS production is directly influenced by the environ-

ment, primarily through the metabolism-enhancing effects
of temperature (Clarke & Fraser, 2004; Halliwell & Gutter-
idge, 2015), although pH (Maurer et al., 2005; Wang et al.,
2009), UV light (de Jager, Cockrell & Du Plessis, 2017) and
photoperiod-influenced circadian rhythms (Hirayama,
Cho & Sassone-Corsi, 2007) can also alter oxidative state.
Developmental rate in some reptiles accelerates with temper-
ature, as does mitochondrial respiration (Sun et al., 2015), so
it is feasible that that ROS could accumulate more quickly at
a higher temperature, activating responses to oxidative stress.
Further, antioxidant capacity in embryos varies in response
to incubation temperature in a TSD turtle (red-eared slider,
Trachemys scripta elegans), indicating that metabolic rate and
ROS accumulation vary with temperature (Treidel et al.,
2016). Additionally, yolk deposition of antioxidants is greater
in birds with shorter developmental periods (Deeming et al.,
2013), suggesting that even in a homeothermic taxon, faster
development results in greater oxidative stress. In some fish
species, water temperature affects redox status and oxidative
damage, although the effects have not been investigated in
the context of sex determination (Birnie-Gauvin et al., 2017).
Environmental cues do not necessarily need to be abiotic,

as many species of fish display forms of socially cued sex
change, commonly through the reorganization of dominance
hierarchies (Todd et al., 2016). Oxidative stress has been
shown to correlate with social status in species of fish
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(Border et al., 2019) and primates (Beaulieu et al., 2014), prob-
ably through the increased behavioral costs of defending and
maintaining dominance. Signals of differential calcium regu-
lation and responses to oxidative stress were both observed in
dominant male bluehead wrasse (Thalassoma bifasciatum), fur-
ther indicating differential regulation of these messenger sys-
tems during sex change (Todd et al., 2018).

Combined with evidence on the environmental sensitivity
of calcium channels, these studies show that a wide range of
environmental conditions, including temperature, during
development can alter both redox state and calcium flux.
This raises the possibility that CaRe status could have a role
as a cellular sensor for a broad range of environmental cues
responsible in developmental programming and variation
in different species.

III. CONNECTIONS BETWEEN CaRe STATUS
AND SEX DETERMINATION

(1) Signal transduction pathways

As discussed above, CaRe status is clearly a strong candidate
for the capture of environmental signals by the cell. We pro-
pose here that the signal captured by CaRe status is then
transduced via ubiquitous signalling pathways that influence
epigenetic processes to govern sex differentiation.

The interactions between CaRe status and cellular organi-
zation and function are complex, and so can interact with a
variety of pathways involved in sex determination. Here we
discuss CaRe-sensitive candidates likely to transduce an envi-
ronmental signal; the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), heat shock response
and antioxidant response pathways, and explore the poten-
tial interactions between CaRe status and another candidate
pathway for ESD, the vertebrate stress axis (Table 1, Fig. 1).

(a) The NF-κB pathway

The NF-κB pathway is involved in a wide variety of cellular
processes and can be activated by Ca2+ influx, ROS, and
ROS-induced glutathione production (Røttingen & Iversen,
2000; Hammond et al., 2001; Antonsson et al., 2003; Mor-
gan & Liu, 2011; Fig. 1).

The NF-κB pathway has well-established associations with
numerous sex determination genes in mammalian develop-
ment. However, its role has been less well studied in ESD
taxa (Josso & di Clemente, 2003; Hong et al., 2003; Delfino &
Walker, 2014; Table 1). Analysis of the transcriptome during
development in two TSD species (the alligator A. sinensis and
painted turtle, Chrysemys picta) showed that differential expres-
sion of various genes in the NF-κB pathway is associated with
temperature at key developmental stages, but this has not
been backed up by functional studies (Radhakrishnan et al.,
2017; Lin et al., 2018).

A single study directly demonstrated a role for NF-κB in
vertebrate sex determination using the zebrafish (Danio rerio)

(Pradhan et al., 2012). While the genetics of sex determina-
tion in laboratory strains of D. rerio lacking a W chromosome
(Wilson et al., 2014) are not yet well understood, it appears to
have a polygenic basis that is sensitive to environmental fac-
tors such as temperature and hypoxia (Ribas et al., 2017; San-
tos, Luzio & Coimbra, 2017). Danio rerio is unusual in that a
juvenile ovary initially forms, and either continues to mature
as an ovary, or transitions into testes through the promotion
of selective apoptosis (Uchida et al., 2004; Chen, Liu & Ge,
2017). Manipulating the induction or inhibition of the NF-
κB pathway prior to gonadal commitment led to a female
or male bias, respectively, demonstrating its role in suppres-
sing the apoptotic pathways that trigger the transition to testis
development (Pradhan et al., 2012). Sex cell-specific apopto-
sis is a well-established mechanism in sex determination in
D. rerio (Uchida et al., 2002), as well as in other teleosts
(He et al., 2009; Yamamoto et al., 2013; Sarida et al., 2019)
and other model organisms such as Drosophila melanogaster

(DeFalco et al., 2003) and Caenorhabditis elegans (Gumienny
et al., 1999; Kuwabara & Perry, 2001; Peden et al., 2007).
Manipulating the NF-κB pathway thus presents opportuni-
ties for exploring the link between CaRe regulation and
ESD (Fig. 2).

(b) Heat shock proteins and the heat shock response

Several authors have proposed a role in TSD for heat shock
proteins (HSPs) (Harry, Williams & Briscoe, 1990; Kohno
et al., 2010; Bentley et al., 2017; Table 1). These proteins
are chaperones and regulators of transcription factor bind-
ing, functions which are essential for maintaining cell func-
tion at extreme incubation temperatures (Haslbeck &
Vierling, 2015; Ikwegbue et al., 2018).

Heat shock causes Ca2+ concentration to rise according to
time and temperature, and concurrently increases levels of
the oxidizing agent hydrogen peroxide (Soncin et al., 2000;
Ahn & Thiele, 2003). This change in CaRe status can acti-
vate heat shock factor 1 (HSF1), which in turn regulates
expression of heat shock protein genes (notably HSP70),
whose actions are required for protection against heat-
induced cell damage (Soncin et al., 2000; Ahn & Thiele,
2003; Tedeschi et al., 2015, 2016; Fig. 1). Incubation temper-
ature affects the expression of many HSPs in reptiles
(Table 1), however, no consistent patterns have emerged
even between closely related species, suggesting that HSPs
exhibit considerable evolutionary flexibility (Harry et al.,
1990; Kohno et al., 2010; Haslbeck & Vierling, 2015; Czer-
winski et al., 2016; Bentley et al., 2017). Inconsistent patterns
of expression of HSPs across species, and their role as molec-
ular chaperones across a wide range of temperatures, might
explain the variety of ESD responses to temperature across
species (Hilton et al., 2015; Tedeschi et al., 2016).

Particularly interesting is that environmental triggers of
HSPs extend beyond temperature. Some members of the
HSP family show differential expression during socially
induced sex change in the two-banded anemonefish (Amphi-
prion bicinctus) (Casas et al., 2016), and HSP10 is associated
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Table 1. Calcium and redox (CaRe)-sensitive elements, their functions relating to epigenetic modulation, cellular localisation and
their roles in environmental sex determination (ESD) or temperature sex determination (TSD)

Candidate element Cellular functions and known roles in environmental sex determination References

Nuclear to cytoplasmic translocation
CIRBP
Cold-inducible RNA-
binding protein

Functions
(1) Translocation to cytoplasm induced by numerous

environmental stressors including temperature and
oxidative state

(2) Typically associates with cytoplasmic stress
granules where it acts as a mRNA chaperone

De Leeuw et al. (2007);
Rhen & Schroeder
(2010); Schroeder et al.
(2016); Radhakrishnan
et al. (2017); Zhong &
Huang (2017)

ESD roles (1) Candidate gene for TSD in Chelydra serpentina

(2) Thermosensitive expression in Chrysemys picta and
Apalone spinifera

hnRNPs
Heterogeneous
ribonucleoprotein particle
family

Functions (1) Involved in numerous cellular processes including
splicing regulation, pre-mRNA processing, nuclear
export of mRNA, chromatin remodeling

(2) Interacted with p38MAPK stress-induced signalling
pathway, and the EED subunit of the PRC2
complex

Harry et al. (1990, 1992);
Huelga et al. (2012); Kim
et al. (2017)

ESD roles (1) Thermosensitive expression in Caretta caretta

(2) Posited as candidates for the regulation of TSD
Cytoplasmic to nuclear translocation
NRF2
Nuclear factor (erythroid-
derived 2)-like 2

Functions (1) Regulates expression of antioxidant genes under
oxidative stress through transactivation of
antioxidant response elements

Covarrubias et al. (2008);
Loboda et al. (2016)

HSF1
Heat shock factor 1

Functions (1) Transcriptional regulator of all heat shock proteins
(2) Redox and temperature regulated
(3) Induced by p38 MAPK phosphorylation

Harry et al. (1990); Kohno
et al. (2010); Tedeschi
et al. (2015, 2016);
Bentley et al. (2017); Lin
et al. (2018); Furukawa
et al. (2019)

ESD roles (1) Role of heat shock response established for
majority of TSD species

(2) Involved in female sexual development in Oryzias

latipes
HSPs
Heat shock protein family

Functions (1) Molecular chaperone for steroids and hormones,
participates in cell signalling

(2) Roles in maintaining protein stability, folding, and
transmembrane transport

Harry et al. (1990);
Brostrom & Brostrom
(2003); He et al. (2009);
Kohno et al. (2010);
Tedeschi et al. (2015,
2016); Casas et al. (2016);
Czerwinski et al. (2016);
Bentley et al. (2017); Lin
et al. (2018); Tao et al.
(2018);Wang et al. (2019)

ESD roles (1) Thermosensitive expression in Alligator

mississippiensis and Alligator sinensis

(2) Markers of thermal stress, and thermosensitive
expression in Caretta caretta

(3) Downregulation of HSP10-associated apoptosis
during sex reversal in Monopterus albus

(4) Various HSPs associated with social sex change in
Amphiprion bicinctus

(5) HSP90 upregulated in Oreochromis niloticus

undergoing temperature-induced sex reversal
Protein kinases
Family includes mitogen-
activated, cAMP-
dependent, calcium/
calmodulin-dependent

Functions (1) Multitude of cellular roles centering on ability to
catalyze protein phosphorylation; integral role in
numerous signal transduction cascades

Radhakrishnan et al.
(2017); Lin et al. (2018);
Tsakogiannis et al. (2018)

ESD roles (1) Temperature-dependent expression in Alligator

sinensis and Chrysemys picta

(2) Male-biased expression in Pagellus erythrinus and
Pagrus pagrus

JAK-STAT pathway
Janus kinase/signal
transducers and activators
of transcription

Functions (1) Redox-regulated signalling cascade for stress
response

Simon et al. (1998);
Radhakrishnan et al.
(2017); Todd et al. (2019)

(Continues)
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Table 1. (Cont.)

Candidate element Cellular functions and known roles in environmental sex determination References

ESD roles (1) Components of pathway show thermosensitive
expression in Chrysemys picta

(2) Progressive upregulation during sex change in
Thalassoma bifasciatum

NF-κB pathway
Nuclear factor kappa light-
chain-enhancer of activated
B cells

Functions (1) Redox-regulated signalling cascade for
environmental stress response

(2) Activation has anti-apoptotic effects

Pradhan et al. (2012); Ravi
et al. (2014);
Radhakrishnan et al.
(2017); Lin et al. (2018)ESD roles (1) Components of pathway show thermosensitive

expression in Chrysemys picta and Alligator sinensis

(2) Crucial for sexual differentiation in Danio rerio

(3) Male-biased expression in Lates calcarifer
No subcellular translocation known/not applicable
JARID2 & JMJD3
Jumonji and AT-rich
interaction domain-
containing 2 (JARID2) and
lysine demethylase 6B
(JMJD3/KDM6B)

Functions (1) Members of the Jumonji chromatin remodeling
gene family

(2) JARID2 mediates Polycomb repressive complex
(PRC2) deposition of silencing H3K27me3 marks

(3) JMJD3 catalyzes demethylation of H3K27me3

Díaz & Piferrer (2015);
Akashi et al. (2016);
Deveson et al. (2017);
Radhakrishnan et al.
(2017); Ge et al. (2018);
Todd et al. (2019)ESD roles (1) Retained intron associated with sex reversal in

Pogona vitticeps, Alligator mississippiensis and Trachemys

scripta elegans

(2) TSD in Trachemys scripta elegans, Chrysemys picta, and
Apalone spinifera

(3) Thermal adaptation in Anolis lizards (A. allogus,
A. homolechis, A. sagrei)

(4) Associated transition to masculine phenotype
during sex change in Thalassoma bifasciatum

(5) Upregulated in response to temperature in
Dicentrarchus labrax

AP1
Transcription factor,
activator protein-1

Functions (1) Acts as a point of integration of many signalling
pathways involved in responses to environmental
signals (e.g. MAPKs, NF-κB, HSPs)

(2) Redox-controlled switch determines ability to
bind DNA

Yin et al. (2017)

TRPs
Transient receptor potential
cation channels

Functions (1) Innately thermosensitive channels that allow the
passive transfer of Ca2+ across the plasma
membrane

Yatsu et al. (2015); Liu et al.
(2015); Lin et al. (2018);
Todd et al. (2019)

ESD roles (1) Known thermosensitivity, temperature-dependent
expression in Alligator sinensis and Alligator

mississippiensis

(2) Calcium signalling enrichment during sex change
in Thalassoma bifasciatum

TET enzymes
Ten-eleven translocation
methylcytosine
dioxygenases

Functions (1) Redox-dependent DNA methylation Todd et al. (2019)
ESD roles (1) Expression strongly associated with sex change in

Thalassoma bifasciatum

DNMTs
DNA methyltransferases

Functions (1) Sensitive to redox state and calcium concentration
(2) Action influenced by the redox microenvironment

of chromatin

van der Wijst et al. (2015);
Tsakogiannis et al.
(2018); Todd et al. (2019)

ESD roles (1) Associated with sex change in Thalassoma bifasciatum
(2) Sex-biased expression in Pagellus erythrinus and

Pagrus pagrus

MAPK, mitogen-activated protein kinase; mRNA, messenger ribonucleic acid; PRC2, polycomb repressive complex 2.
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with female to male sex reversal (the trigger of sex reversal is
not yet known) in the rice field eel (Monopterus albus), where it
plays a role in inhibiting apoptosis in male germ cells
(He et al., 2009). GivenHSPs demonstrated roles in sex deter-
mination across ESD taxa, and responsiveness to diverse
environmental stimuli, they are promising candidates for fur-
ther study (Fig. 2).

(c) Oxidative stress and the antioxidant response

Cellular responses to oxidative stress commonly involve
induction of the cell’s inbuilt antioxidant defense system
(Kobayashi et al., 2009). The response is generally initiated
by nuclear factor erythroid-related factor 2 (NRF2), whose
action is critical for the oxidative stress response and cytopro-
tection (Brigelius-Flohé & Flohé, 2011; Loboda et al., 2016).
Ordinarily NRF2 persists in the cytoplasm at low levels
bound in an inactive state with KEAP1 (Kelch-like ECH-
associated protein 1). However, in a state of oxidative stress
the bond with KEAP1 is broken, allowing NRF2 to

translocate to the nucleus where it binds to antioxidant
responsive elements. This initiates expression of genes such
as thioredoxins, peroxiredoxins, and glutaredoxins that are
critical to launching an antioxidant response to oxidative
stress (Nguyen, Nioi & Pickett, 2009; Fig. 1).
These antioxidants quench ROS and cross-talk with

proteins involved in the NF-κB pathway (Morgan & Liu,
2011). Glutathione is particularly crucial in the oxidative
stress response, as the ratio of its oxidized and reduced
states (GSH:GSSG ratio) is responsible for sensing the
redox status of the cell (Storey, 1996; Hammond et al.,
2001; Robert, Brunet-Rossinni & Bronikowski, 2007;
Cyr & Domann, 2011). Glutathione directly modifies chro-
matin structure via histone glutathionylation, increasing the
binding of transcription factors and upregulating gene
expression (Olaso et al., 2013). This has been demonstrated
in mammals, in which glutathione enhances decondensa-
tion of the paternal genome in a newly fertilized egg
(Reyes et al., 1989; Sutovsky & Schatten, 2005; Sánchez-
Vázquez et al., 2007).

Fig. 1. A subset of environmental response pathways hypothesized to be involved in environmental sex determination, activated by
external signals integrated into the cell as calcium and redox (CaRe) status. This simplified model outlines how an environmental cue,
in this case temperature, can alter CaRe status by causing an influx of Ca2+ ions through innately thermosensitive transient receptor
potential (TRP) channels, and an increase in reactive oxygen species (ROS) production by mitochondria through increased metabolic
rate. With their reciprocal co-regulation, both Ca2+ and ROS can act in concert to activate transcription factors [heat shock factor
1 (HSF1); nuclear factor erythroid-related factor 2 (NRF2)] and pathways [nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB)], which then translocate from the cytoplasm to the nucleus to alter the transcription of target genes involved in sex
determination. HSP, heat shock protein; KEAP1, Kelch-like ECH-associated protein 1.
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Broadly, the response of antioxidant genes to environmen-
tal changes may be able to affect chromatin structure, essen-
tially ‘priming’ key regions for binding by transcription
factors, such as components of the NF-κB pathway
(Hammond et al., 2001), and the polycomb repressive com-
plex PRC2, which is likely to be involved in reptile sex rever-
sal (Deveson et al., 2017; Georges & Holleley, 2018). The
antioxidant response can therefore induce changes in gene
expression and protein function which may contribute to
the broader processes taking place during sex determination
and differentiation in environmentally sensitive species
(Table 1).

(d) Synergism between hormonal and oxidative stress

The hypothalamic–pituitary–adrenal (HPA) axis in reptiles,
birds and mammals or inter-renal (HPI) axis in fish and
amphibians has a role in sex determination in a range of taxa
[see reviews in Goikoetxea, Todd & Gemmell (2017) and
Geffroy & Douhard (2019)]. Among gonochoristic (single-
sex) fish, cortisol-mediated sex determination in response to
temperature is well supported by experimental application
of cortisol (Hattori et al., 2009; Hayashi et al., 2010; Casta-
ñeda Cortés et al., 2019; Miller et al., 2019). Cortisol has not
yet been experimentally demonstrated to be a mediator of
sex change in sequentially hermaphroditic teleost fish, but
transcriptomic evidence suggests cortisol upregulation, sup-
porting a role for the HPI axis in the repression of aromatase
and the regulation of downstream epigenetic effectors of
gene regulation (Fernandino et al., 2013; Solomon-Lane,
Crespi & Grober, 2013; Goikoetxea et al., 2017; Todd
et al., 2019).

Even in these fish species in which the stress axis has been
co-opted as the environmental sensory mechanism, CaRe
pathways may play a synergistic role in initiating, maintain-
ing or mediating sex determination or sex change. Hormonal
stress results in oxidative stress via an increase in metabolic
rate (Spiers et al., 2015), and Ca2+ has a very strong associa-
tion with sexual reproduction in fish (Persson et al., 1998;
Johnson & Chang, 2002; Norberg et al., 2004). For example,
a social cue such as the removal of a dominant male induces
HPI activation and glucocorticoid production in the domi-
nant female of some species (Goikoetxea et al., 2017). Ele-
vated hormonal stress then results in aromatase repression
and elevated androgen production through glucocorticoid
receptor (GR) nuclear localisation and glucocorticoid recep-
tor element (GRE) occupation in key genomic regions (Adolfi
et al., 2019; Todd et al., 2019). Concurrently, hormonal stress
leads to oxidative stress through elevated metabolism and
energy production (Spiers et al., 2015), and alteration in
CaRe status through one or more of the mechanisms
described herein. There is extensive cross-talk between the
hormonal stress axis and CaRe-sensitive pathways, creating
opportunities for the two to synergise. CaRe-sensitive HSPs
chaperone GRs, and GRs further interact extensively with
the NF-κB pathway in a stimulus-, time-, and cell-specific
manner to control responses to stimuli (Bekhbat, Rowson &

Fig. 2. Generalised model for the influence of environment on
sexual fate in vertebrates, identifying target stages for
manipulation techniques that facilitate rigorous testing of the
model. Solid lines indicate the top-down influence from
environmental cue to sexual outcome, while dashed lines
indicate areas where there is potential for feedback loops
to occur. Incubation/rearing conditions during the
environmentally sensitive period can be expanded to include
not just the environmental stimulus the species is known to
respond to, but other calcium and redox (CaRe)-altering
stimuli, such as ultraviolet (UV) light, green light, or pH (1).
Ca2+ flux can be manipulated either through the addition of
calcium (typically accompanied by the calcium transporter
ionomycin) or through altering the function of transient
receptor potential (TRP) channels, either through RNA
interference or the administration of TRP channel agonist and
antagonist drugs (2). Reactive oxygen species (ROS) production
can be manipulated by the direct addition of oxidants
(e.g. H2O2) or antioxidants, or by application of ROS-inducing
drugs (e.g. doxorubicin) (3). A range of approaches could be
taken to interfere with cellular signal transduction pathways,
which would vary depending on the pathway of interest (4).
Subcellular localisation is similarly pathway specific, but for
example small peptides can be used to inhibit nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear
translocation (Gupta et al., 2011) (5). The role of epigenetic
regulators can be investigated using agents for histone
demethylation (e.g. 5-azacytidine), or through agents that
inhibit the epigenetic regulatory machinery, for example
polycomb repressive complex 2 (PRC2) inhibitors (Danishuddin
et al., 2019) (6). Genes suspected to be involved in the
determination of sexual fate can be downregulated through
gene knock-down, RNA interference, or the addition of
downstream products including hormones or hormone
disruptors (e.g. estrogen, testosterone, corticosterone, or
fadrozole) (7).
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Neigh, 2017). Whether CaRe pathways play a causative or
synergistic role with stress hormones in species that have
co-opted the HPI axis for sex determination (as many teleost
fish clearly have) is not yet known, but there is evidence to
suggest that these interactions exist.

Among crocodilians, turtles, and squamates there is little,
and contradictory, evidence for the involvement of stress hor-
mones in ESD. Temperature sex-reversed adult bearded
dragons (Pogona vitticeps) display greatly upregulated pro-
opiomelanocortin (POMC) gene expression in the brain, sug-
gesting stress axis upregulation (Deveson et al., 2017). How-
ever, in other reptiles, manipulating incubation
temperature and yolk corticosteroids during the embryonic
period of sex determination has not demonstrated a causal
link between temperature and glucocorticoid production
(Uller et al., 2009; Warner, Radder & Shine, 2009; Iungman,
Somoza & Piña, 2015; Marcó et al., 2015). Additionally,
gonads of TSD reptiles cultured in isolation from the brain
were still found to respond to temperature, suggesting that
the effect of temperature on the HPA axis is not the
temperature-sensitive mechanism in reptiles (Moreno-Men-
doza, Harley & Merchant-Larios, 2001; Shoemaker-Daly
et al., 2010; Mork, Czerwinski & Capel, 2014). Thus, there
is substantial evidence that the stress axis plays a role in
ESD in teleost fish, but evidence for stress axis activation as
a cause or consequence of sex reversal among reptiles
remains equivocal. It is therefore unlikely that the stress axis
is central to the temperature-sensitive mechanism in all verte-
brates, but a common role for CaRe mechanisms is plausible
in both teleost fish and reptiles with ESD.

(2) Subcellular localisation

A commonality among many of the candidate pathways and
proteins discussed herein is that their mode of action
requires cellular translocation in response to changes in
CaRe status (Nelson et al., 2004; Awad et al., 2013) (Fig. 1,
Table 1). A change in localisation of transcription factors is
necessarily upstream of any changes in nuclear organization
and gene expression. For example, in mammals the testis-
inducing transcription factor (SOX9) must be translocated
from the cytoplasm to the nucleus for normal testes develop-
ment to occur. Otherwise, the developing gonads retain
ovary-like characteristics even when expression levels of
SOX9 are maintained (Chen et al., 2017). This process in
mammals is regulated by the CaRe-sensitive catabolite acti-
vator protein cyclic AMP (cAMP) and protein kinase A phos-
phorylation (Malki et al., 2005a,b), and by Ca2+-calmodulin
nuclear entry pathways (Hanover, Love & Prinz, 2009). It
is plausible that a similar process, linked more directly to
environmental conditions, occurs in vertebrates with ESD.
While numerous candidates whose function relies on
changes in cellular localisation have been associated with
ESD, functional studies in this context are currently lacking,
so future experimentation would benefit from considering
these processes (Fig. 2).

(3) Alternative splicing and epigenetic remodeling

As well as the signal transduction pathways discussed above,
there are other mechanisms that can also modulate gene
expression in response to environmentally driven changes
in CaRe status (Table 1). While these are as yet poorly under-
stood, evidence is building that post-transcriptional processes
including alternative splicing and epigenetic remodeling are
involved in ESD.
In the 1990s, differential splicing was proposed to control

TSD after differential expression of heterogeneous ribonu-
cleoprotein particles (hnRNPs) was discovered in two TSD
turtles (diamondback terrapin,Malaclemys terrapin and logger-
head turtle,Caretta caretta) (Harry et al., 1990;Harry, Briscoe &
Williams, 1992; Jeyasuria & Place, 1998; Table 1). Splicing
factors in the hnRNP family were suggested to regulate
expression of key genes in a temperature-dependent manner
at crucial stages in development, although the mechanism by
which thermosensitivity is conferred on hnRNPs was (and
remains) unidentified (Harry et al., 1992; Matthew Michael,
Choi & Dreyfuss, 1995; van der Houven van Oordt et al.,
2000; Huelga et al., 2012).
Subsequently, sex-specific associations with a single nucle-

otide polymorphism, embryonic expression profiles, and pro-
tein localisation in the TSD snapping turtle (Chelydra
serpentina) suggested that CIRBP (cold-inducible RNA-
binding protein; CIRP, A18 hNRNP) was critical for determin-
ing sex (Schroeder et al., 2016). This gene has thermosensitive
expression in the pond slider turtle (Trachemys scripta)
(Chojnowski & Braun, 2012) and Chinese alligator
(A. sinensis) (Lin et al., 2018), so this gene may be involved in
TSD more broadly. CaRe status may be involved in the reg-
ulation of CIRBP, as it can be activated by a variety of envi-
ronmental stressors that cause changes in CaRe, including
osmotic shock, hypoxia, heat, and oxidative stress (Zhong &
Huang, 2017). CIRBP may also be involved in mediating
CaRe-regulated feedback loops, as upon activation it can
function as an RNA chaperone or post-transcriptional regu-
lator of many CaRe-sensitive genes (Peng et al., 2006; De
Leeuw et al., 2007; Zhang et al., 2016; Zhong &
Huang, 2017).
Recent work supports the early evidence for a role of alter-

native splicing of key chromatin remodeling genes in TSD in
reptiles. A sex-associated retained intron event in two mem-
bers of the Jumonji gene family JARID2 and JMJD3 (also
called KDM6B) occurs in three thermally sensitive reptile spe-
cies (Pogona vitticeps, Alligator mississippiensis, and Trachemys

scripta; Deveson et al., 2017). In P. vitticeps, intron retention
(IR) occurs only in sex-reversed females produced at high
incubation temperatures. There is variation among these
species in the pattern of sex-associated IR, perhaps arising
from different ancestral genetic sex determination systems
(Deveson et al., 2017). In a fish that undergoes socially cued
sex change, the bluehead wrasse Thalassoma bifasciatum,
JARID2 and other cofactors within the PRC2 (EZH2,
SUZ12, EED, RNF2) are transiently downregulated during
female to male transition (Todd et al., 2019). Both JARID2
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and JMJD3 also exhibit thermosensitive expression in the
brains of sex-reversed (neomale) Nile tilapia (Oreochromis nilo-
ticus) (Zhao et al., 2019). The PRC2 complex is also involved
in orchestrating the commitment of sexual fate in GSD spe-
cies, primarily through chromatin remodeling on the sex
chromosomes (Garcia-Moreno, Plebanek & Capel, 2018).

JARID2 and JMJD3 regulate the tri-methylation of his-
tone H3, lysine 27 (H3K27), and are involved in orchestrat-
ing embryonic development and sexual differentiation
(Sanulli et al., 2015; Holoch & Margueron, 2017) (Fig. 3).
Knockdown of JMJD3 in a TSD turtle (T. scripta elegans) at
male-producing temperatures triggers female development
in 80% of embryos that survive (Ge et al., 2018). JMJD3
mediates transcription of the male-determining gene
DMRT1 (Ge et al., 2017) by demethylating the repressive
H3K27me3 near its promoter (Ge et al., 2018). Downregula-
tion of JMJD3 by upstream mechanisms responding to high
temperature results in persistent tri-methylation of H3K27,
which suppresses DMRT1 and promotes the female develop-
mental pathway (Fig. 3). Upregulation of JMJD3 in response
to lower temperature results in de-methylation of
H3K27me3 near the DMRT1 promoter, activating DMRT1

expression and promoting the male developmental pathway
(Fig. 3). In alligators, switching embryos from a low female-
producing temperature to a high male-producing tempera-
ture results in downregulation of JARID2 and JMJD3, fur-
ther demonstrating the commonality of these chromatin
remodeling pathways in reptiles (Yatsu et al., 2016). The
interplay between thermo-responsive intron retention and
activity of JMJD3 (Deveson et al., 2017; Ge et al., 2018) is
not well understood (Georges & Holleley, 2018). However,

these recent findings have dramatically shifted the focus of
inquiry from direct thermosensitivity of candidate sex-
determining genes to higher-order thermosensitive epige-
netic processes that differentially downregulate or upregulate
influential sex genes (Georges & Holleley, 2018).

CaRe status may be directly linked to the epigenetic pro-
cesses discussed above. ROS release from mitochondria
(Ying et al., 2018) and hydrogen peroxide exposure (Niu
et al., 2015) can alter histone methylation, and the oxidative
status of a JMJD3-regulating transcription factor (STAT6)
directly alters JMJD3 (He et al., 2016). JARID2 and the asso-
ciated epigenetic remodeling complex PRC2, and JMJD3,
exhibit a wide range of responses to oxidative and other cel-
lular stressors, triggered by environmental signals such as
heat shock (Marasca, Bodega & Orlando, 2018). The actions
of hnRNPs also change depending on their oxidation status.
For example, the activity of hnRNPk (a chaperone and inhib-
itor of HSF1 binding to heat shock elements) alters depend-
ing on the oxidation status of a single redox-sensitive
cysteine residue, affecting the activation of heat shock
response genes (Kim et al., 2017). Alternatively, epigenetic
processes may be mediated by the CaRe-responsive signal-
ling pathways detailed above. The NF-κB pathway is known
to control some histone methylation marks, perhaps via the
transcriptional regulation of KDM2B, another lysine
demethylase (Nakshatri et al., 2015), and HSF1 has been
demonstrated to open chromatin structure to assist the
recruitment of other transcription factors (Inouye et al.,
2007). These examples point to a promising area of future
research, directed at the CaRe-sensitive epigenetic processes
driving ESD.

Fig. 3. A schematic diagram showing the action of Jumonji family genes in altering the expression of a key sex gene in the red-eared
slider turtle (Trachemys scripta elegans) based on the work of Ge et al. (2017, 2018). At female-producing temperatures (FPT), the
chromatin modifier JMJD3, a histone demethylase, is downregulated, presumably under the influence of calcium and redox
(CaRe)-mediated upstream signal transduction pathways. This allows the polycomb repressive complex 2 (PRC2) complex to
deposit heritable methylation marks on histone 3 lysine 27 (H3K27me3), in part due to the action of JARID2. The methylation
marks deposited in the DMRT1 promoter give permanence to the trimethylation and repression through cell division, ultimately
leading to ovary development. At male-producing temperatures (MPT), JMJD3 is upregulated, likely under the influence of
upstream CaRe-mediated signal transduction pathways. JMJD3 removes the H3K27me3 marks deposited by the PRC2 complex
on the DMRT1 promoter, which then opens this region for transcription by as yet unidentified transcription factors, so altering the
developmental trajectory toward a male fate. [After Georges & Holleley, 2018]. Image credit (turtle silhouette) Roberto Díaz
Sibaja under PhyloPic Creative Commons attribution unported license 3.0.
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IV. EVOLUTIONARY SIGNIFICANCE OF CaRe
REGULATION

Tightly controlled regulation of intracellular levels of Ca2+ and
ROS is essential for life, and has been since the emergence of
the earliest eukaryotes (Maynard Case et al., 2007). The regula-
tory mechanisms by which Ca2+ and ROS are sensed, and the
genetic pathways involved in responding to these signallingmol-
ecules, are therefore highly conserved (Aguirre et al., 2005). The
evolution of sexual reproduction itself has been proposed as an
adaptive response to mitigate the subcellular damage caused by
increased production of ROS in an oxygen-rich environment
(Nedelcu & Michod, 2003). An alternative view is that ROS
production by bacterial endosymbionts may have driven the
evolution of sexual reproduction as a mechanism to allow for
DNA repair through recombination (Hörandl & Speijer, 2018).

In a facultatively sexual multicellular alga (Volvox carteri),
temperature-induced ROS production triggered sexual
reproduction (Nedelcu, Marcu & Michod, 2004), and treat-
ment with antioxidants completely inhibited temperature-
induced sexual reproduction (Nedelcu & Michod, 2003).
There is a fundamental association between ROS and the
regulation of sexual reproduction in all three eukaryotic
domains (Gapper &Dolan, 2006). ROS are known to control
sexual/asexual reproductive modes in fungi (Lara-Ortíz,
Riveros-Rosas & Aguirre, 2003), affect germination and
gametogenesis in plants (Chailakhyan & Khrianin, 1987;
Traverso et al., 2013), and influence reproductive phenotypes
in multicellular animals (Shibata et al., 2003).

Canalisation of the downstream regulatory pathways of
gonad development, indicated by the relative commonality
of gonadal structure, releases upstream elements of the regula-
tion from selection. Provided functional ovaries or testes result,
diversity in the upstream regulatory processes will be tolerated
by selection (Georges et al., 2010; Capel, 2017). The resultant
evolutionary flexibility might account for the phylogenetic var-
iability of ESD systems, which has been difficult to explain
(Sarre et al., 2004; Bachtrog et al., 2014; Pennell, Mank & Pei-
chel, 2018). In particular, the independent re-emergence of
TSD fromGSD can be seen as a gain of sensitivity to the envi-
ronment without the disruption of underlying CaRe mecha-
nisms, which are essential for life (Pokorná & Kratochvil,
2009; Georges et al., 2010; Janes, Organ & Edwards, 2010).
Sensitivity to CaRe status can therefore be rapidly regained
if there is selective pressure to do so. This may require only
small-scale biochemical changes, allowing rapid responses in
shorter evolutionary time scales compared with larger scale
genetic or physiological changes.

V. APPLYING THE CaRe MODEL IN THEORY
AND PRACTICE

(1) Summary of the model

We have provided a simplified and generalized framework
that proposes a critical role for CaRe regulation in

environmentally sensitive sex determination systems. The
CaRe model we present posits that an environmental influ-
ence, for example temperature, acts as a cue to stimulate a reg-
ulatory cascade that ultimately delivers a sexual outcome
(testes or ovaries) (Fig. 2). Such temperature cues act upon
thermosensitive ion channels to regulate Ca2+ flux, interacting
with ROS production driven by metabolic rate, resulting in a
CaRe status that captures the environmental signal. CaRe sta-
tus is decoded and transmitted to the nucleus via signal trans-
duction pathways, such as the NF-κB and heat shock
response pathways, potentially moderated by antioxidant
activity (Fig. 1). Each of these signal transduction pathways is
likely to involve changes in subcellar localisation of key tran-
scription factors such as HSF1, which can influence expression
of genes responsible for developmental outcomes (Kim et al.,
2009; Fig. 1). CaRe status can also be transmitted via epige-
netic or post-translational modifications, so that a diverse array
of CaRe-sensitive cellular pathways can ultimately drive differ-
ential gene expression and direct sexual outcomes.

(2) Testing hypotheses derived from the model

While our model is necessarily speculative, it forms a basis for
the generation of testable hypotheses and the re-examination
of existing data. Models such as this have proven immensely
successful in setting priorities and giving direction to research
on the genes and gene products responsible for sexual differ-
entiation (Morrish & Sinclair, 2002; Smith & Sinclair, 2004).
Functional analysis will be critical for determining the role

of CaRe in ESD systems and elucidating the species-specific
pathways involved. Our model identifies target stages at dif-
ferent levels of the pathway for manipulation techniques,
which can be applied to a wide range of study species
(Fig. 2). Manipulation of such ubiquitous signal transduction
pathways is likely to present practical barriers (e.g. lethality),
so we suggest that functional manipulation should exploit the
wide variety of targeted inhibitor drugs and enhancers in
both in vitro and in vivo experiments. We might borrow
approaches from the biomedical and cancer research fields,
in which these regulatory pathways are becoming well char-
acterized and techniques for their manipulation are becom-
ing more accessible. Gene editing techniques such as the
clustered regularly interspaced short palindromic repeats
(CRISPR-Cas9) system (Cong & Zhang, 2015), combined
with drug manipulation and transcriptomic approaches, will
increase understanding of the role of these ubiquitous signal
transduction pathways in both model and non-model species
with ESD.
Understanding the mechanisms by which environmental

signals are transduced to determine sex will have broader
implications beyond the evolution of ESD systems. Practical
applications could include manipulation of sex ratios in
aquaculture systems, which frequently rear ESD species. Pre-
cise control of sex ratios in farmed species could increase effi-
ciency of food production for a growing human population
(Budd et al., 2015). More broadly, a better understanding of
ESD is increasingly important for assessing the biological
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impacts of climate change on environmentally sensitive spe-
cies (Parmesan & Yohe, 2003; Umina et al., 2005; Etterson
et al., 2007; Sinervo, 2010; IPCC, 2013). Already populations
of ESD species are experiencing skewed sex ratios caused by
rising global temperatures (Mitchell & Janzen, 2010; Refsni-
der & Janzen, 2016; Bókony et al., 2017; Hays et al., 2017;
Honeycutt et al., 2019). By understanding how an environ-
mental signal is transduced to a sexual outcome, novel con-
servation management strategies could be devised to avoid
or mitigate these impacts of climate change.

VI. CONCLUSIONS

(1) A universal cellular sensor in ESD systems must be (i)
inherently environmentally sensitive; (ii) capable of interact-
ing with components of known sex determination pathways;
and (iii) highly conserved in function yet plastic enough to
be recruited for the transduction of different environmental
signals for different phenotypic outcomes.

(2) CaRe status meets these requirements for a cellular sen-
sor, and associated CaRe-sensitive pathways are promising
candidates for the transduction of the environmental cue to
orchestrate sex determination and differentiation in ESD spe-
cies. Several lines of evidence support our model that CaRe-
sensitive pathways have been independently and repeatedly
co-opted as the mechanism by which an environmental signal
is transduced to a sexual outcome in ESD species.

(3) The CaRe model is so far the only unifying model that
has been proposed for ESD in vertebrates. Continued inves-
tigation of the role of CaRe regulation in ESD through
explicit testing of CaRe mechanisms proposed in this review
will not only advance understanding of evolutionary develop-
mental biology and genetics, but may also at last identify the
cellular sensing mechanism of ESD.

(4) We posit that what has been viewed as an intractable
problem of identifying the environmentally sensitive
element(s) among a myriad of possible candidates with puta-
tive influences on sexual differentiation, instead involves the
more tractable challenge of identifying highly conserved
ancestral elements of cellular machinery under the influence
of equally highly conserved signalling pathways.

(5) We present this model as a basis for future experimen-
tation that goes beyond simply examining gene expression.
Our model incorporates signal reception, capture of the sig-
nal by the cell, receipt of the signal by established cellular sig-
nal transduction pathways, and the transduction of signals to
the epigenome to direct gene expression leading to discrete
sexual outcomes.
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IUNGMAN, J. L., SOMOZA, G. M. & PIÑA, C. I. (2015). Are stress-related hormones
involved in the temperature-dependent sex determination of the broad-snouted
caiman? South American Journal of Herpetology 10, 41–49.

JANES, D. E., ORGAN, C. L. & EDWARDS, S. V. (2010). Variability in sex-determining
mechanisms influences genome complexity in reptilia. Cytogenetic and Genome Research
127, 242–248.

JEYASURIA, P. & PLACE, A. R. (1998). Embryonic brain-gonadal axis in temperature-
dependent sex determination of reptiles: a role for P450 aromatase (CYP19). The
Journal of Experimental Zoology 281, 428–449.

JOHNSON, J. D. & CHANG, J. P. (2002). Agonist-specific and sexual stage-dependent
inhibition of gonadotropin-releasing hormone-stimulated gonadotropin and
growth hormone release by ryanodine: relationship to sexual stage-dependent
caffeine-sensitive hormone release. Journal of Neuroendocrinology 14, 144–155.

JOSSO, N. & DI CLEMENTE, N. (2003). Transduction pathway of anti-Müllerian
hormone, a sex-specific member of the TGF-β family. Trends in Endocrinology &

Metabolism 14, 91–97.

KIM, D.-H., DOYLE, M. R., SUNG, S. & AMASINO, R. M. (2009). Vernalization: winter
and the timing of flowering in plants. Annual Review of Cell and Developmental Biology

25, 277–299.
KIM, H. J., LEE, J. J., CHO, J. H., JEONG, J., PARK, A. Y., KANG, W. & LEE, K. J. (2017).

Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced
transcriptional activity of heat shock factor 1. Journal of Biological Chemistry 292,
12801–12812.

KOBAYASHI, M., LI, L., IWAMOTO, N.,NAKAJIMA-TAKAGI, Y., KANEKO, H.,NAKAYAMA, Y.,
EGUCHI, M., WADA, Y., KUMAGAI, Y. & YAMAMOTO, M. (2009). The antioxidant
defense system Keap1-Nrf2 comprises a multiple sensing mechanism for
responding to a wide range of chemical compounds. Molecular and Cellular Biology

29, 493–502.
KOHNO, S., KATSU, Y.,URUSHITANI, H.,OHTA, Y., IGUCHI, T. &GUILLETTE, L. J. (2010).

Potential contributions of heat shock proteins to temperature-dependent sex
determination in the American alligator. Sexual Development 4, 73–87.

KOZAI, D., OGAWA, N. & MORI, Y. (2013). Redox regulation of transient receptor
potential channels. Antioxidants & Redox Signaling 21, 971–986.

KUMAR, A., KUMARI, S., MAJHI, R. K., SWAIN, N., YADAV, M. & GOSWAMI, C. (2015).
Regulation of TRP channels by steroids: implications in physiology and diseases.
General and Comparative Endocrinology 220, 23–32.

KUWABARA, P. E. & PERRY, M. D. (2001). It ain’t over till it’s ova: germline sex
determination in C. elegans. BioEssays 23, 596–604.
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