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In reptiles, sex-determining mechanisms have evolved repeatedly and rever-

sibly between genotypic and temperature-dependent sex determination. The

gene Dmrt1 directs male determination in chicken (and presumably other

birds), and regulates sex differentiation in animals as distantly related as

fruit flies, nematodes and humans. Here, we show a consistent molecular

difference in Dmrt1 between reptiles with genotypic and temperature-

dependent sex determination. Among 34 non-avian reptiles, a convergently

evolved pair of amino acids encoded by sequence within exon 2 near the

DM-binding domain of Dmrt1 distinguishes species with either type of sex

determination. We suggest that this amino acid shift accompanied the

evolution of genotypic sex determination from an ancestral condition of

temperature-dependent sex determination at least three times among rep-

tiles, as evident in turtles, birds and squamates. This novel hypothesis

describes the evolution of sex-determining mechanisms as turnover events

accompanied by one or two small mutations.
1. Introduction
Genotypic (GSD) and temperature-dependent sex determination (TSD) have

evolved reversibly and repeatedly in reptiles [1,2]. At least four studies have

reported reptile phylogenies with varying frequencies of change between GSD

and TSD [1–4]. Although sex chromosomes have been retained throughout

birds and snakes, lizards exhibit abundant turnover of sex chromosomes and

sex-determining systems [5–8]. TSD is attributed to all crocodilians, most turtles

and some lizards, and GSD has been inferred for extinct marine reptiles [9].

In this study, we describe an amino acid shift within the protein-coding

region of the gene Dmrt1 that largely distinguishes reptiles characterized as exhi-

biting either TSD or GSD. DMRT1 is essential in double dosage for male

development in humans, despite its location on an autosome [10] and its func-

tional activation after Sry, the master sex-determining gene [11]. Dmrt1 is

directly responsible for the initiation of male sex differentiation in chicken,

Gallus gallus [12]. This gene is considered the sex-determining gene in chicken,

because among genes that govern sexual development, Dmrt1 resides on the

sex chromosomes, acts in a sex-specific pattern in the gonad earliest among
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those genes, and sex is reversed when Dmrt1 expression is sup-

pressed [12]. In chicken, Dmrt1 knockdown is followed by

decreased activity of Sox9, a gene responsible for testis differ-

entiation, resulting in a female phenotype [12]. Here, we show

that two mutated amino acids in Dmrt1 accompanied a

convergent phenotype of GSD at least three times in reptiles.
 ypublishing.org
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2. Material and methods
Novel Dmrt1 sequences were obtained for fourteen reptiles by

sequencing targeted PCR products from RNAs and for tuatara,

Sphenodon punctatus, by searching an unpublished genome database.

Other Dmrt1 sequences were downloaded from GenBank at the

National Center for Biotechnology Information [13] or from Ensembl

[14] (electronic supplementary material). The amino acid alignment

was curated using BIOEDIT [15] and aligned in SEAVIEW v. 4.5.1 using

the MUSCLE algorithm [16]. The program PRANK was used to align

DNA sequences, using the codon option [17].

PHYML v. 3.0 [18] was used to construct the phylogeny of

Dmrt1 using DNA sequences (less than or equal to 733 nt). Top-

ology and branch lengths of the tree were inferred from the

Dmrt1 sequence data using the HKY model. We specified a gen-

eral time reversible model with gamma-distributed rate variation

and invariant sites. We used MEGA v. 6.0 [19] to infer ancestral

amino acid sequences at selected nodes using maximum-

likelihood and the LG model [20] of amino acid evolution.

A time-calibrated tree was created in MESQUITE v. 3.01 [21] with

the topology from our phylogenetic inference and branch lengths

manually adjusted by Date-a-clade [22], using previously

published divergence times [23–25].

The BAYESTRAITS program (http://www.evolution.rdg.ac.uk/

BayesTraits.html) was used to run a reversible-jump MCMC

algorithm on character states for sex-determining mechanism in

extant species [9] and ancestral reconstructions of sex-determining

mechanisms in the ancestral archosaur, diapsid and lepidosaur [1]

to test for correlated evolution between TSD and the combination

of threonine at position no. 54 and serine at position no. 57. We

used a gamma-distributed hyperprior with mean and variance

randomly sampled from 0 to 10. The MCMC ran for 2 100 000 iter-

ations with a 100 000 burn-in and a sampling frequency of 1000.

Sex-determining mechanisms were coded as 0 for GSD and

1 for TSD. Sequence data were coded as presence (1) or absence

(0) of threonine at position no. 54 and presence (1) or absence

(0) of serine at position no. 57.
3. Results
Using the time-calibrated tree, we found evidence that changes

from an ancestral TSD state with threonine at position no. 54

(T54) and serine at position no. 57 (S57) of Dmrt1 (posterior

probability (PP) ¼ 95%) are associated with GSD evolution in

reptiles. Further, we found 89% posterior support using the

tree with branch lengths in units of substitutions per site of

Dmrt1. Our results also suggest that evolution of T54 was

dependent on evolution of S57 (PP ¼ 99.9% using the time-

calibrated tree and PP¼ 95% using the tree with branch

lengths in substitutions). Sites 54 and 57 are found within

exon 2 near the DM-binding domain of Dmrt1. Maximum-

likelihood phylogenetic inference supports T54 and S57 in

the ancestral archosaur and diapsid and T54 and T57 in the

ancestral lepidosaur with probabilities greater than 90%

(figure 1). The covariation of these two amino acids and sex-

determining mechanism was originally identified by visual

inspection of full-length Dmrt1 sequences across a subset of
reptiles. The T54–S57 condition is found in all available

Dmrt1 sequences for extant reptiles with TSD, with the excep-

tion of Pelomedusa subrufa, Podocnemis expansa, Carettochelys
insculpta and Eublepharis macularius. All 18 extant reptiles in

our dataset that exhibit GSD, and all nine sampled birds

differ in one or both of these sites, suggesting a conformational

difference between Dmrt1 in avian and non-avian reptiles with

different sex-determining mechanisms. Low levels of docu-

mented homology and partial coverage for Dmrt1 protein

prevented us from characterizing the effect of the two AA

shift on three-dimensional conformation of the protein.
4. Discussion
This is the first report, to the best of our knowledge, of a mol-

ecular difference in a sex-determining gene between reptiles

with GSD or TSD. Several lines of evidence support the idea

that this amino acid shift accompanies turnover of sex-deter-

mining mechanisms. Dmrt1 is known to direct sexual

development in chicken [12], a species found within Reptilia,

a clade known for frequent and reversible changes in sex-

determining mechanism [1]. Dmrt1 is expressed more in

gonadal tissues of males than of females, even in a turtle that

has TSD [26]. In other species, including mice and rats,

Dmrt1 contributes to male sexual development but does not

act first among sex-differentiating genes [27]. Capture or influ-

ence by one gene on sexual development could occur at any

point in the gene cascade [28]. Therefore, we are not surprised

to find exceptions to the two AA pattern across sampled rep-

tiles. Sex-determining mechanisms have changed frequently,

suggesting more than one cause. GSD, in extant therian mam-

mals, is driven predominantly by Sry. Amino acid shifts in

Dmrt1 are not likely to alter sex-determining mechanism in

those species or in amphibians, all of which have GSD. None-

theless, the relatively tight correlation of T54-S57 or other

amino acid states and sex determination phenotypes, despite

shifts in key driver genes, is intriguing. Even as a midpoint

in the cascade, change in function of Dmrt1 could change over-

all function and thermal sensitivity of the cascade. By this

model, in most sampled reptiles with TSD, Dmrt1 has the

T54–S57 condition but still functions as part of the cascade

of genes responsible for sexual development, enabling function

and avoiding loss by gene conversion.

By using the amino acid shift as a proxy for sex-determining

mechanism in a phylogenetic analysis, we replicated ancestral

reconstructions that were previously inferred based on charac-

terizations of mechanisms in a family-level analysis [1]. The

ancestral lepidosaur is reconstructed as potentially exhibiting

T54–T57, predicted to accompany GSD, as inferred using a

different criterion. Likewise, the ancestral archosaur and diapsid

are reconstructed as exhibiting T54–S57, indicative of TSD, also

shown by previous reconstructions [1]. The ancestral amniote

was also reconstructed as exhibiting T54–S57 despite lack of

robust reconstruction of that ancestor as exhibiting TSD.

Staurotypus triporcatus, a turtle with XY sex chromosomes

homologous to chicken ZW sex chromosomes [29], exhibits

an S54–S57 pattern also found in birds (figure 1). Finally,

Carettochelys inscupta, a turtle with the only inferred reversal

from GSD to TSD in chelonians [4], retains the S54–A57 pattern

found in its GSD sister family Trionychidae, suggesting that

TSD may have re-evolved by a different path from the TS

amino acid state in Carettochelys. Thus, the TS amino acid state
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Xenopus tropicalis 
Xenopus laevis 
Loxodonta africana 
Orycteropus afer 
Felis catus
Rattus norvegicus 
Monodelphis domestica 
Sarcophilus harrisii 
Staurotypus triporcatus 
Chelonia mydas 
Lepidochelys olivacea 
Terrapene carolina 
Mauremys reevesii 
Malaclemys terrapin 
Chrysemys  picta 
Trachemys  scripta 
Pelomedusa subrufa 
Podocnemis expansa 
Pelodiscus sinensis 
Apalone mutica 
Emydura macquarii
Carettochelys insculpta
Crocodylus palustris
Gavialis gangeticus
Alligator mississippiensis
Alligator sinensis 
Struthio camelus 
Columba Iivia
Falco peregrinus 
Pseudopodoces humilis 
Ficedula albicollis 
Geospiza fortis 
Zonotrichia  albicollis 
Gallus gallus
Meleagris  gallopavo 
Sphenodon  punctatus 
Anolis carolinensis 
Gekko hokouensis
Eublepharis macularius 
Aspidoscelis inomata 
Ctenotus taenioulatus 
Eulamprus quoyii
Pogona vitticeps
Podarcis siculus
Calotes versicolor
Leiolepis reevesii 
Python molurus 
Python regius
Trimeresurus flavoviridis 
Notechis scutatus 
Elaphe quadrivirgata

Figure 1. Maximum-likelihood analysis of an ancestral Dmrt1 protein for diapsids, archosaurs and lepidosaurs. A consistent amino acid shift at positions 54 and 57
in the alignment largely distinguishes GSD and TSD species. Most TSD species (bold Latin binomials) have T and S in positions 54 and 57 of this sequence,
suggesting mutation at these positions in the gene that codes for Dmrt1 accompanies a change in sex-determining mechanism. Grey outlined columns indicate
positions 54 and 57. Bold amino acids indicate species with the T54 – S57 amino acid state. The set of states at each node is ordered from most to least likely,
excluding states with probabilities below 5%. Amino acid states in parentheses are ambiguous.
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appears to allow TSD, but TSD is likely to be possible in the

absence of the TS state, as GSD is possible in the presence of

TS seen in amphibians and mammals. The relationship between

our described amino acid shift and sex determination is only

part of a complex evolutionary history of sex-determining

mechanisms. This discovery suggests a new model for turnover

of reptiles’ sex-determining mechanisms in which one or two

amino acid mutations accompanied a series of changes that

altered the mechanisms’ thermal sensitivity.
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