Wildlife Genomics@UC %,
180N i \Q_;:ﬁ

UNIVERSITY OF
CANBERRA

SNP Analysis using dartR

— dartR

Guide to Basic
Filtering

Version 2

| AE
Institute forApplied"Ecology

Biomatix — biomatix.org.au

Copies of the latest version of this tutorial are available from:

The Institute for Applied Ecology
University of Canberra ACT 2601
Australia

Email:
Copyright @ 2022 Arthur Georges, Bernd Gruber and Jose Luis Mijangos [V2]

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, including electronic, mechanical, photographic, or magnetic,
without the prior written permission of the lead author.

dartR is a collaboration between the University of Canberra, CSIRO and Diversity
Arrays Technology, and is supported with funding from the ACT Periority Investment
Program, CSIRO and the University of Canberra.

ﬁ Diversity

UNIERSITY OF Arrays
CANBERRA Technology

2 University of Canberra

Short Course — A Primer on dartR

Contents

Session 1: Basic Filtering ..o

L Y= T SRR
Example: Filtering on reproducCibilityooooiiiiiiiii e
EXEICISES ..ot

Recalculating locus metadata after filtering
L1 L= T T R o (=

Where have We COME?..... it e ne s n s e 8
Further reading........ccocimiiimni i 8

University of Canberra || 3

Biomatix — biomatix.org.au

Session 1: Basic Filtering

Calling SNPs in genotyping by sequencing is not an exact science. Judgements
need to be made at various points in the workflow to increase the likelihood of a
correct call at a particular locus. DArT Pty Ltd has already done much of the
filtering of the sequences used to generate your SNPs that would normally be
undertaken by researchers who generate their own ddRAD data. Here we present
some other filters that you might wish to apply to increase the reliability of the
data retained in your SNP or SilicoDArT dataset.

For each filter parameter offered by dartR, we provide both a report function and
a filtering function (e.g. gl .report.reproducibi l ity us associated with

gl .filter.reproducability). The reporting function provides descriptive
statistics for the parameter of choice for your data. Inspection of these outputs
will assist you to identify appropriate filter thresholds. Hence, as a standard
workflow, it is a good idea to run the gl . report functions in advance of applying
each gl . Filter function to provide a foundation for selecting thresholds.

Several filters are available to improve the quality of the data represented in your
genlight object. Some of these are specific to dartR data (e.g.
gl.filter.reproducability), but most will work on any data provided they
are in the appropriate genlight format.

The basic ones are:

gl <-
gl.filter.reproducibility() filter out locifor which the
reproducibility (strictly repeatability)
is less than a specified threshold, say
threshold = 0.99

gl <- gl.filter.callrate() filter out loci or individuals for which
the call rate (rate of non-missing
values) is less than a specified
threshold, say threshold = 0.95

gl <- gl._filter_monomorphs() filter out monomorphic loci and loci
that are scored all NA

gl <- gl.filter.allna filter out loci that are all missing values
(NA)

gl <-gl.filter._.secondaries() filter out SNPs that share a sequence
tag, except one retained at random

gl <- gl.filter.hamming() filter out loci that differ from each
other by less than a specified number
of base pairs

gl <- gl.filter.rdepth() filter out loci with exceptionally low
or high read depth (coverage)

gl <- gl._filter.taglength() filter out loci for which the tag length
is less that a threshold

University of Canberra

Short Course — A Primer on dartR

gl <- gl.filter.overshoot() filter out loci where the SNP location
lies outside the trimmed sequence
tag

The order of filtering can be important and requires some thought. Filtering on
call rate by individual before filtering on call rate by locus or choosing the
alternative order will depend on the weight placed on losing individuals versus
losing loci, for example.

Example: Filtering on reproducibility

First, we should examine the distribution of reproducibility measures (RepAvg) in
our dataset.

gl .report.reproducibility(testset.gl,plot=TRUE)

Starting gl.report._reproducibility
Processing SNP data

Reporting Repeatability by Locus
No. of loci = 255

No. of individuals = 250

Minimum : 0.959459
1st quartile : 1

Median R

Mean : 0.9981525
3r quartile : 1

Maximum :

1
Missing Rate Overall: 0.12

Quantile Threshold Retained Percent Filtered Percent

1 100% 1.0000000 214 83.9 41 16.1
2 95% 1.0000000 214 83.9 41 16.1
3 90% 1.0000000 214 83.9 41 16.1
4 85% 1.0000000 214 83.9 41 16.1
5 80% 1.0000000 214 83.9 41 16.1
6 75% 1.0000000 214 83.9 41 16.1
7 70% 1.0000000 214 83.9 41 16.1
8 65% 1.0000000 214 83.9 41 16.1
9 60% 1.0000000 214 83.9 41 16.1
10 55% 1.0000000 214 83.9 41 16.1
11 50% 1.0000000 214 83.9 41 16.1
12 45% 1.0000000 214 83.9 41 16.1
13 40% 1.0000000 214 83.9 41 16.1
14 35% 1.0000000 214 83.9 41 16.1
15 30% 1.0000000 214 83.9 41 16.1
16 25% 1.0000000 214 83.9 41 16.1
17 20% 1.0000000 214 83.9 41 16.1
18 15% 0.9976873 216 84.7 39 15.3
19 10% 0.9945940 229 89.8 26 10.2
20 5% 0.9883732 242 94.9 13 5.1
21 0% 0.9594590 255 100.0 0 0.0

Completed: gl.report.reproducibility

This output is useful in that it provides an indication of how much data will be lost,
when filtering, for each choice of a threshold value. Clearly, with a minimum
repeatability of 0.96 and a maximum of 1 across loci, we can be fairly stringent in
our choice of a threshold. A value of 0.99 will not result in the loss of much data
(16.1%). The judgement can also be made on the basis of the graphical output.

University of Canberra || 5

Biomatix — biomatix.org.au

SNP data (DArTSeq)
Repeatability by Locus

0.95 0.97 0.98 0.99 1.00
200
180
™
c
3
& 100
50
D PR R
0.96 0.97 0.98 0.99 1.00
Repeatability

We now filter on selecting a threshold value of 0.99.

gl <- gl.filter.reproducibility(testset.gl,
threshold=0.99, verbose = 3)

Starting gl.filter.reproducibility
Processing a SNP dataset
Identifying loci with repeatability below : 0.99
Removing loci with repeatability less than 0.99

Summary of filtered dataset

Retaining loci with repeatability >= 0.99
Original no. of loci: 255

No. of loci discarded: 14

No. of loci retained: 241

No. of individuals: 250

No. of populations: 30

Completed: gl.filter.reproducibility

Only 14 loci out of 255 were deleted.

It is wise not to filter too heavily on reproducibility. A threshold of 1 is often
tempting but can result is some bias being introduced.

" \ Exercises
. 1. Justin case you have accidentally modified the genlight object gl,
recreate it by copying it from testset.gl.

gl <- testset.gl

2. Filter gl using the filters listed above. Request a report first to
inform your choice of threshold. Be sure to set plot=TRUE to examine
the distribution of each parameter and optionally smearplot=TRUE to
examine the smear plot.

6 University of Canberra

Short Course — A Primer on dartR

Remember, the locus metrics are no longer valid if individuals or populations are
deleted from the dataset. For example, if you filter out a population for which the
individuals have particularly bad call rates, then the call rate parameter held in the
locus metrics will no longer be accurate. It will need to be recalculated. This is true
of many of the locus metrics.

So, after filtering your data, it is wise to recalculate the locus metrics with

gl <- gl.recalc.metrics(gl)

L i \ Try this for yourself on genlight object gl after filtering or on your own data

Similarly, when filtering has resulted in removal of some individuals or
populations, variation at several loci may be lost. Some loci may even be scored as
missing across all individuals. You may wish to remove these monomorphic loci
from your dataset with

gl <- gl.filter.monomorphs(gl)

L ! \ Try this for yourself on genlight object gl after filtering or on your own data

It is often unclear as to what order the filtering steps should take in your
workflow. Does one filter on call rate by individual first then call rate by locus or
the other way around. There is no correct answer to this, as it depends on
whether you value retaining loci over retaining individuals. Usually, you would
not want to lose individuals from your dataset, so filtering out those loci will low
call rates would come first, filtering on individuals second, though this is not
always the case. A starting point for considering a workflow might be:

1. Optionally filter on Hamming Distance if the DArT threshold is considered
too lenient.
Filter out secondaries (all but one SNP retained per sequence tag)

Optionally filter on read depth if the DArT threshold is considered too
lenient.

Filter out loci with a reproducibility below a particular threshold (say 0.98)
Filter out loci with a call rate below a particular threshold (say 0.95)
Filter out individuals with a call rate below a particular threshold (say 0.80)

Be careful not to over-filter. The objective is to get an appropriate balance
between signal to noise ratio, not to eliminate noise altogether at the expense of
also taking out some signal. This balance will depend on downstream application.

University of Canberra || 7

Biomatix — biomatix.org.au

An example of a filtering sequence might be

gl <-gl.filter.secondaries(gl)

gl <- gl.filter.rdepth(gl)

gl <- gl.filter.reproducibility(gl)

gl <- gl.filter.callrate(gl, method="l1oc”)

gl <- gl.filter.callrate(gl, method="ind”)
gl <- gl.filter.monomorphs(gl)

&

The above Session was designed to give you an overview of the scripts in dartR for
filtering your data. Having completed this Session, you should now able to:

Filter on call rate, repeatability, secondaries, hamming distance, and minor
allele frequency.

Recalculate locus metrics after deleting individuals or populations as part of
the filtering process.

Filter out resultant monomorphic loci.

Having played with the various filters, you should also have a good appreciation of
how to select appropriate thresholds for filtering and how to introduce a
sequence of filtering steps into your workflows.

Jombart T. and Caitlin Collins, C. (2015). Analysing genome-wide SNP data using adegenet
2.0.0.

Gruber, B., Unmack, P.J., Berry, O. and Georges, A. 2018. dartR: an R package to facilitate
analysis of SNP data generated from reduced representation genome sequencing.
Molecular Ecology Resources, 18:691-699

Ende

University of Canberra

